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Preface

Flom theoretical linguistics to computational models of natural language, unification-based

processing has become a central methodolory in many research efforts. In theoretical linguis-

tics, unification-based formalism has become one standard form of representation; many the-

ories such as LFG ([Bresnan and Kaplan, 19821), EPSG ([Poilard and Sag, 1987]), and JPSG

([Gunji, 198d) use feature structure and unification as the.base of constraint postulations. In

cotrputational linguistics, uniffcation is used as the central constraint processing mechanism

during parsing based upon the unification-based Brrmmar analyses. In artificial intelligence,

unification-based natural language is often used as an integral part of inference and learning

mechanisms. Recent efforts in massively parallel artificial intelligence have also demonstrated

the strength of graph unification as a uniform constraint processing mechanism for natural

language in a massively parallel environment.

Despite the popularity of unification-based processing, graph unification, which is the com-

putational method of unificatioa-based processing, has remained a bottleneck of the unification-

based systems. For example, in unification-based grammar parsing using parsing algorithms

such as Earley's algorithm and Tomita's algorithm, unification operations often consume 8b to

95 percent ofthe total cpu time devoted to a parse. In one large-scale unification-based spoken

language parserl, sometimes g8 percent of the elapsed time is calculated to be devoted to uni-

fication operation atone ([Kogure, 1990]). Furthermore, the number of unification operations

tends to grow as the grammar gets larger and more complicated. Thus, an unavoidable paradox

is that when the natural language system gets larger and the coverage of linguistic phenomena

is increased as an attempt to bring performance to a practical level, the number of unification

lATRta EPSG-bascd apoken Japaneoe analyaio oyoteo.
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operatiOns increttes rapidly and the performmCe of the systems degrades to an impraCtiCJ

level. Thus an avdlability Of ettCient graph unincation is Of paramount importance bOth to

theoretical natural language research as well as tO PTactical natural language systems.

Overall parsing emciency iS Crucial when building or eXperilnentingヽ
with both practiCal

and experimental natural language systems. For realtime practiCal systems,parsing speed is a

prerequbitQ.For theoreticd expe五 Fent就
1°n,the ttciency of hypothesis testing depend3 0n

the speed of constraint procesSing. In the inodeFn linguistic framework,Inost parsing systemS

cOnsist of two basic cOnstraint proCessing mechanismS:1)COntext‐
free pttsing algorithms and

i庶lW言貰丁ぶ茸:lX‖:fltta‖夏藍衡
NL systems,the beneflt Of improVing graph‐

unincation algorithms seems apparent.

The Center fOr Machine Transl就 ion of Carnegie Me1lon Un市ersity pro宙ded me with bOth

the en宙■Onment ald the fundingfOr pursuing my Ph.D.Tesearch tt Cttnegie Me■
on UniVersity.

The L壼)oratory for Computational LingulstiCS of C=negle Me■
on Un市 erslty was the base

of the theoretiCal exploration of unincation_based inguistiC procesSing。
 ,Masaru Tomita was

the chairman Of my cOmmittee and provided me w■
th everything l needed for pursuing my

gOals at Cttnegic Me■ o■ UniversityD including the theSiS topic. Jaime C=bOnen,director

Of Center for]И achine Translation'nd also Ole° f my COInlnittee nlembers, deservesmanT

thanks fOr his SuppOrt,adViCe md encouragement throughout my dayS tt Cttnegic Me1lon

University.Without his strong suppOrt,I WOuld not haVe been able to continuc lny research at

Cttnegie Menono A180,Without Tommy=ld」
aime,I would not hNe joined C=negic Menon

Un市erSity in the nrst placeo David Evans,my ttivisor and a130 the director ofthe Laborttory for

Computational LinguistiCS｀ and ofthe Ph.Do program in COmputational Linguistics,supported

meth■oughout my gradutte student years and also provided me With linguistic and Philosophical

,
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insights into natural language. Alex Waibel, also my advisor, provided me with an excellent
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comments and support when I needed them. I wish also to thank Sergei Nirenburg, Lori Levin,
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for all the help and advice they gave me while I was at the Center. Radha Rao, the Business

Manager of the Center, always handled my last minute requests with generositn as did current
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Moore. The former and the current members of the Laboratory for Computational Linguistics
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Kee, and Renee Schafer. Important parts of the thesis resea,rch were conducted during the

two periods when I was a Visiting Research Scientist at ATR (Adnanced Telecommunication

Research) Interpreting Telephony Research Laboratories in Kyoto, Japan twice (10 and 8 month

stays in 1990 and 1991). Akira Kurematsu, Tsuyoshi Morimoto, Eitoshi lida, Kiyoshi Kogure,

Osamu Furuse, Susumu Kato, Masaaki Nagata, Toshiyuki Takezawa, Kenji Kita, Genichiro
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Kikui,TOSttihisa Tashiro,Kazum1 0hkura tte among the rese=Chers tt ATR who COntributed

signincantly tO this work.

Makoto TaLhashi,Hidehiko Mttsuo,ald Kyoko Sagi,of Toyo lnform乱
lon Systems WOrked

with researchers at ATヨしand did their fully separate and independent implementatiOns of lny

algorithms for ATPs l霞 ge scale speech‐ to― speech transl乱 ion systems(SLTRANS and AsuRA)。

They have provlded me with invaluable feedback for developing the later versions of my al―

gorithms. 」たmong their contributions were extremely detailed experimental results on the al―

gOrithms'behttiour under dittrent environmentS(memory management,dtta structures,GC

=L撚

,lI111■
ft点1lTT童1lliI11'患 C

using ATR's grammar(PTObably the largest」 apanese gramm=ever developed).Their test

results conirmed my smaller scale experiments based on my implbment乱
lons which are re‐

ported in this thesis.Marie Boyle of the University of Tuebingen,Peter Neuhaus of Universitit

Karbruhe,祖 d graduate students at Tokushima University are among Other researchers who

independently implementec the early versions of my algoithms=ld PTOVided me with many

useful and important suggestions.I am J80 indebted to the members ofICOT(InStitute for
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‖I二五I二∬1lll‖驚IIttI甘二∬茸IIIF
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Chapter L

FoundatiOns

1.1 fntroduction

A variet5r of grammatical formalisms have been proposed historically in computationat linguis-

tics, natural language processing, and artificial intelligence to capture the phenomena called

'language'. Kay proposed Functional Grammar and Functional Unification Grammar (FUG,

[Kay, 1984]) motivated by the notion of. functionol ilescription of language. Bresnan and Kaplan

developed the Lexical Functional Grammar (LFG, [Bresnan and Kaplan, 1982]) based on the

framework of lexically-oriented linguistics. In the aritificial intelligence community, Definite

Clause Grammar (DCG, [Pereira and Warren, 1980]) wa.s developed by Pereira and Warren

in the logic programming framework. Logic programming and DCG later became the base of

natural language research efforts in the Japanese fifth generation computer research (ICOT).

Gazdar developed Generalized Phrase Structure Grammar (GPSG, [Gazdar, et a( lgSb]) in

the nontransformational model of linguistic analysis. Pollard and Sag developed Eead-driven

Phrase Structure Grammar (HPSG, [Potlard and Sag, 1987]) in the similar nontransformational

framework centered around the notion of. the linguistic heoil of o phrase. Gunji developed the

(C



Japanese Phrase Structure Grammar (JPSG, [Gunji, 19S?]), which is a Japa^nese cousin of

EPSG. JPSG later became the central linguistic processing framework in the Japanese inter-

preting telephony research efforts (ATR).

In the more computational and implementational aspects, PATR-II (lShieber, ef al, 1983])

was developed at the SRI AI Center as a theory-neutral simple and malhemoticolly well-founiled

tool for natural language processing. At Carnegie Mellon University to address the inefficiency

of unification algorithms, pseudo unification and Pseudo Unification Grammar were developed

as a part of machine translation research ([Tomita. and Knight, 198d).

All these grammatical formalisms (at least the modern versions of them) use feature strucr-
(

ture as objects for capturing linguistic objects and use unification as the central constraint

processing mechanism. In this chapter we would like to review both basic and formal proper-

ties of feature structures and unification.

L.2 Feature Structures

Despite the variety of analysis captured in modern theoretical and computational models of

language, the so-called feuture structure has been accepted as the common object for repre-

sentation. Pollard and Sag explain, "fnstead of the NASA Physicists' Euclidean spaces and

difFerentid equations,though,the fOrm」 9bject of choice in inお rmttion‐ btted linguistics漁爾
:

things known as feoture structured'. A feature structure is a structured object that represents

informational content by specifying a set of. feotures and their tolues pairs. Feature structures

provide partial information about the information-bearing entities such as linguistic objects. In

other words, feature structures are partial descriptions of things that are captured in different

theories of language. Formally, feature structures can be understood as partial functions from

１

増

…

嚢

′●ヽ1
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feotures to their aolues where the underlying domainl of the partial functions is provided re-

cursively. Conventionallg feature structures are represented using the matrices offeature value

pairs. For exa,mple, a feature structure representing the linguistic object for a female professor

named Moiloko may be represented as below.

name Madoku

sea female

occupation professor

(o For the sake of economy of type-setting as well as of consistency with the sample feature

structures in the appendix taken from the actual computer outputs, we also represent the same

feature structure as below in this thesis.

[ [narne madoka]
[sex fernale]
[occupation professor] l

which can also be represented graphically as:

Iemale Pr wreDru, madOka

Figure 1-1: Graphical Representation of a Feature Structure

Since we will be representing feature structures in any of the above three ways in this thesis,

II・
e・ ,48.origi,ally denned by Ruseen for domain of relationg。

(a

f emale professor

11



we wiU be using the terms leoturesrlohels, and IaDeIs on the arcs interchangeably.

A fundamental property of feature structures is their potential for hietarchiolity (lPollara

and Sag, 1g8d). Thus, the value of a feature itself may be another feature structure embedded

within. For example, below is a feature structure providing a partial description of a linguistic

entity for a third person singular feminine noun:

cotegory iV

ogreernent

number singulor

per:on thiril

gender leminine

Or in our alternate notation:

[[category Nl
lagreement [lnunber singularl

[person third]
lgender tenininellll

singular third feminine
Figure 1-2: A third person singular feminin noun entity

Feature structures can be understood as partial functions mapping features to values. For

example, in the example for Mailokaprovided above, the feature structure defines the mapping
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of the feature nome to the value rnailoho, of sex to the value fernole, and of occupation to

professor, The partial descriptions by feature structures can be understood as ,,descriptions

pa"rticipating in a relationship of partiality with respect to each other" ([Pereira and Shieber,

19841). Formallg feature structures can be defined as below:

Defl'nition 1.2.1 (Feature Structures) Let f be o possibly infinite set of leatures anil C a

possiblg infinite set of atomic ualues, We first define special feoture structures {T, I}. T

represents ano informotiontt ond L represents oinconsistent information". The setl of leature

structures can be ilefineil by:

r= 0rdu{r}
i=0

The set T; is ilefineil recursiaelg such that

Io:CU{T}
i-1

For il /, I;= bWrf 3 Utp\ uhereDorn($ ep'(f).
Ic=0

Eere Dom(I) ilenotes ilomsin of the portiol function 72 and Pt(f) denotes o non-empty power

sef of F anil S nototes partiol moppings.

This way, the features (ttr..., l-) of a feature structure ? are mapped to the values (f(fr), ..., z(l-))
for which the feature structure, as a partial function, is defined.

Nor,trton. Following Pereira's notation ([Pereira, 1985]), we represent the value of the

feature l; of a feature structure ?, i.e., {I;) by 1/l;.

For exampl e, 1 | categor! = N represents the feature structure provided above for the partial

description of a third petson singular feminine noun.

2R€call that in aet theory, domain of a partial function f:A -r B is the set {olo € ,{ a.nd /(c) € A}. Also
imlgc of f, written Im(f) ia the eer {/(")1" e Dom(f)}.
- 'R:qIl lhgt power set of A is the aet of all subsete of A, For ex"nple, if A={1,2,3}, power eet of A is
{1,2,3},t1,2},{2,3},{1,3},{1},{2},{3}, and 0.

(0

13



Notntron. Following the standard notation of set theory, we-shall write Dom(f) to denote

the domain of the mappings from features to values for a feature structure 'y. In other words

Dom(1\ represents the eet of features on the feature structure 'y. These features are not

recursive, i.e., only the highest features are elements of. Dom(1). For example, Dorn(fi of the

feature structure provided previously for the description of a third person singular feminine

noun is {categorg, agr eement}.

'For 
embedded feature structures, we geneqalize the notig,n of features and introduce the

notion of. poth. A path is a sequence of features from the outermost feature structure of the

embedding to the feature of the innermost feature structure. In our vocabulary, it is a sequence/

Y
of features from the highest to the lowest in the feature structure hierarchy. For instance,'

1 agreementrnumber ) is a path for the sample feature structure provided above for a third

person singular feminine noun.

Not.a.rIoN. We generalize the notation 7/l representing the value of the feature I of feature

structure,y to apply to the path of features, written 1fp. Therefore, given the path P € f*,

which is p -( Ir,...,In ) embedded in 'y € f, then tlp = (...((f(tr)Xfz))...X1'). For instance,

with the above feature structure for a third person singular feminine noun'

1l < agreententrnuntber )= singular.

1.3 Four Types of Feature Structures

we haャe four typё s of fe就平rё strutttits:atοれ,こ:こ0,Prett Ψ″jabres and・ j売 lbttjjgιθπcy.Atomic

fetture structures tte fetture struetures,ith c6nstmt就omit,aliё6`Coh,lex feature struc‐

tures are feature structures which cOntain feature Structures within。 .Thus,to be precise,only

cOmplex fetture stiuctures ctt beヤ iewed ajlo■ tial functilll ⅢOⅢ featⅢёS,O Values.The

vdues of complex Lature structures themselves are dways fetture structures(complex,atomic,
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or variable). Variables are the special feature structures with an empty domain. Variables are

also called Top in this thesisa. Variables are the least informative feature structures indicating

no information at all. Inconsistency are those that indicate inconsistent information. The idea

behind inconsistency is that such feature structures represent more information than any fea-

ture structure possible. It indicates too much information to the extent that it is inconsistent.

Inconsistency is also called Bottom in this thesis. Care needs to be taken in reading Top and

Bottom, since due to historical reasons for looking at the hierarchy of information content, ?op

are somtimes called Bottorn in the literature (and vice versa).

Nouttow. We shall denote oariables by either I or T and, inconsistency by a.

L.4 Generalization and L]niftcation

We can define two cla.ssical operations on feature structures: generalization and unification.

Generalization is the operation to find a feature structure that contains only the information

that is common in two feature structures. When common paths contain conflicting information,

generalization introduces a variable and makes an abstraction. Unification is the operation to

find a feature structure that contains the information in both feature structures but no addi-

tional information. If inconsistency of information is found at any depth of the paths, unification

immediately returns inconsistency for the highest feature structure (the root feature structure).

When a unification returns inconsistencyrwe say that the unification foiled. This way, unifica-

tion is a operation to determine the consistency of information between two feature structures.

Informallniflisafeaturestructure(fef),generalizationoflandTalwaysreturnsTsince

by definition no information is common between the two. Alternatively, unification of ? and

4Note that iTomabechi,1991司
and ITomabechi,199a caned itぅ 。ι′οm in3tead Of fο ′.

(l
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T always returns 'y since by definition, .y contains the information of both and nothing more.

Generalization of two atomic feature structures is T if they are not the same. That is, it has

the property of making an abstraction by returning a variable for inconsistent information. If

they are the same then the generalization is also the name. Unification of two atomic feature

structures are I if they are not the same. If they are the same then unification is also the same'

Generalization of two complex feature structures is the feature structure only with paths that

aie common to two feature structures and unification of two complex feature structures is the

one that contains both the unique paths and the common paths'

Nor.lrrow. We shall denote generalization operation by f[ (or U ) and unification oPeration
tt

by Jl (or n) in this thesis.

More formally, generalization |l and unification fl operations on feature structures I are

defined below: But first, it is useful to define the two operations Complementarcs and Inter'

sectorcsbetween feature structures. These operations were originally provided in [Pereira, 1985]

and are central to unification:based algorithms including the one we are proposing in this thesis.

Deflnition 1.4.1 (Complementarcs and fntersectarcs) For tuo feature sttuctures'YL,12 e

l, the follouing tuto operotions oie itefineil corresponding to the set-ilifierence ond set'intersection

operations on ilornoins of th.e portiol functions.

む。mpreme.,arcl(γ l,わ)={(1,|)C γll『

“

Dο抗(72)}

I■ιerscctarcs(■ ,72)={(r,γ )∈

"IJC Dο

m(摯)}

Notation. We shall denote Gomytlementarcs(11,f2) by 'nO'lz und Intersectarcs(11,12)

by ?r d :)tz.

Complementa,rcs(11rfz) is the set of mappings of 'y1 from features to values with features

that exist in .y1 but not in "y2. Since mappings are often represented by arcs, they are called

16
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Complementarcs. Intersectarcs(11, tz) is the set of mappings of 'y1 from features to values with

features that exist in both 1 and in 72. Note that values of Complementarcs and Intersectarcs

are sets of mappings (i.e., pa^rtiat functions) and not domains.

Deflnition 1.4.2 (Generalization\ Let T be the set of feature structures as ilefined preti-

ouslg, then below is the definition of the generalizotion operotion ( ll ):
1)V € l, ?IIT = T

2)Yx€CV12 €c\{rr}, TIJ.tz =T
e)V e t, rllz - r
il Vn,T €t \ {T,I, } \ c, Vll € Darn(114 tz), (1aIJ1'.2)h = r(l) Ilrz(l)

Deflnition 1.4.3 (Uniffcation) Let t be the set of feoture structures as ilefineil preoiouslg,

then belou is the ilefinition ol the unification operation ( Il )t
1)W € l, ?IIT -- r
2) vy€ I V"y2 € c \ {rr}, TTI^tz = L

s) vt € I, ?IIr -- r
ilYr,?z€l\{T,r,}\c,

iI SI e D*(tt 4 tz\, ?r0) II.r2(t) -- a

then 11IIrz -- I
else Vlr € Dom(114.t2)rVlz € Dombze 11

(rr IIrz)tr -- rr(lr) IIrz(lr) and (11fln)tz = n(tz)

Below is the example of unification and generalization:

1.
[[category N]

[agreenent [ lnunber. singularJ

17



[person third]lll

2.
[[category NJ

[agreement [[number singularJ
[gender femiuine]lll

3. Unificatiou of t,2z
[ [category llJ
[agreement [[ur:raber singularJ

[person third.]
[gender feninine]lll

4. Geueralization of 1r2:
[[category N]

[agreenent [lnurnber singular]lll

5.
[lcategory N1

[agreement [[number pIuraLJ
lperson thirdllll

6. Unification of 3,5
Inconsistency

7. Generalization of 3,5
[[category NJ

[agreenent [[nunber []l
lperson tbirdlljl

1.5 Some Formal Properties of Feature Structures

From the definition of generalization and unification, we can easily see that unification and

generalization satisfy the usual formal laws of idempotenc5 commutativity, associativity and

absorption. Eowever, distributivity is not satisfied.

^I

(,A

ξ
　
　
＾

Ｆ

ヽ

18



Idempotent :

'tAU"tA ='YA

'ltfl'u='1.a.

Commutative :

t;.IJtB : "rBIJ.'r.n

teflta ='taT7"t.e,

Associative :

(l (r.r II ra) II 'tc = 'tAII(ra II rc)

(r,r II rl\Iltc = refT(rB II rc)

Absorptive :

teIJ?elTtB) = tt

uTTbl-IJta) = 1n

not Digtributive :

(t

'tt II(ra II rc) = (reII ra) II(r,r II rc)

reTIUs IIrc) v (reIIrs) Ubt IIrc)

Unification and generalization are not distdbutive since the generalization introduces

variables for inconsistent information and therefore, order of unification and generalization

changes the results. For example, Figure 1-3 is the example where distributive law does

not hold for unification and generalization.

Note that when [b n] and [b ol are generalized tb I]l ir returned. This ability to generalize

inconsistent information makes unification and generalization not distributive to each

other.

19



Figure 1-3: uniflcation and generalization are not distributive

Eowever, since commutativity and associativity are satisfied, as long as unification is the

only operation on feature structures, the order ofunification does not matter regardless o(

the number of unifications performed on a set of feature structures. This is one important

reason that feature structures and unification are used as formal tools for representing

constraints in many linguistic theories, since constraints can be described declaratively

without wirrying about the order in whiih feature structures are combined by unification.

日 (^口 C)
Ψ
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Iattice theoretic When two operations such as V and A are defined for some set E and if

these two operations meet the laws of commutativitS associativity, and absorption, then

we know in set theoretic terms that:

L. aV b = b and a Ab = a have the same valuesl

2. if we define as a ( b then f, is a ordered set and forms a lattice.

3. Also oVD and oAD a.re equivalent to join and meet operations on alattice.

This wan from the properites we saw so far, we know that feature structures I forms

a lattice (< l,II' II >) and that generalization is a join and that unification is a meet

operations on lattice of feature structures. Eere, the naturally defined order for feature

structures corresponds to the order based upon how much information is contained in

the feature structureg. By deffnition of our generalization and unification operations, the

ma:cimum element of the lattice is T and the minimum is the J-. In other words, more

general elements are put toward higher parts of the lattice.

1.6 Reentrancy

An additional characteristic of feature structures that is found useful in modern theoretical

and computational models of language is reentroncy. A, reentrant feature structure contains

another feature structure embedded within that is shaxed by two or more distinct paths within

the feature structure.

NotlttoN. We say that the values of two paths are "the same" when the two values are

token identical. We use the notation :p for this relation. Thus, tr/pt =r ^ht/p2 when they are

"the same", i.e., when 'yrlptr.ly/pz are actually the single ?r € I.

(l
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Deflnition 1.6.1 (Reentrancy) Distinct paths 7t1r...tpn (oll of them in o single 1 €T) ore

soiil to be reenlront ifr tlpt =t t lpzEr, ..., =r t lp*.

Norattols. If paths pb...tpn of a feature structure l are reentrantwe shall denote the

reentrancy by [pr, ...rP^lr

More informally, two or more distinct paths in the same feature structure are said to be

reentrontwhen they share ttthe same" value. As an example, the feature structure below is not

reentrant:

Tokyo
a

Tokyo

Figure 1-4: Non-reentrant feature structure

But the following is a reentrant feature structure:

Figure l― |:本 re9■tF早ⅢIや■tWre,tr■ 91urO
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In Our bracketed notation,the non‐ reentrant feature structure is:

l[born Tokyo]
lhorne Tokyoll

The non-reentrant feature structure above indicates the "similar value,, but not the ,,same

value". Thus, the above indicates the value Tokgo as the same type but not the same token.

More precisely, the value may or may not be of the same token (i.e., the values may indeed be

the "same", but they are only guaranteed to be ,.similar',).

The reentrant feature structure in our bracketted notation is:

[[born I01 Tokyo]
lhorae I01l l

Eere, X01 shows that what follows it is reentrant with some other paths. If there is more

reentrancy, more reentracy marks X0l,...,Xmn will be tagged before the values. The tagging is

valid only within one highest level feature structure ("highest" meaning the top level feature

structure of the embedding). Therefore, the values with the same tagging Xo1 in the distinct

feature structures do not indicate the sa.me value.

We could also use the notation

for representing the reentrancy.

■
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■
１
‥
ｌ
ｌ
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Ｊ
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λ

鋤回

回
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０

　
　

　

０

う

　

λ

Ｆ

Ｉ

Ｉ

Ｉ

」

23



Finally, below is an example of a reentrant feature structure with a complex value (embed-

ding) using the three alternate notations.

and in our bracketted notation.

[lsubject [[agreeneut I01 [[nurnber singular]l
lpersou thirdl
[geader ferniniue]lll

lpredicate [[agreement X01]lll

The ability to represent reentrancy has been useful and used standardizedly in many lin-

guistic theories to capture phenomena such as agreement provided above. Also, by irpecifying

the value of certain paths, the equality relation between the paths is an important tool for

having different theoretical constraints interact. For example, an entity filling the position of

As a graphic flgure in Figure l-6:じ さ
)ブ
)

preilicote 
I ogrr"*"rt tr ]

ち

b

singular third feminine
‐  ‐

Figure l‐6:■t06mplett roё ntrant Feature structure

Using conllnon notation found in linguistic uterature:

subject agreement tr
number singulor

person third

geniler feminine
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a syntactic subject may bb reentrant for an entity filling the sema.ntic agent position of the

feature structure.

L.7 Extention and Subsumption

"Some feature structures ate mo?e informatioe than others" ([Pollard and Sag, lggd). As we

saw previously, there is a natural partial order defined for feature structures forming a lattice.

This ordering is based on the amount of informational content the feature structure capy.

Informalln a feature structure 'yr4 is considered more informative than 79 if it is at least as

informative a.s 7.a by containing at least all paths io ?a. Such a relation is called estention and,

it is gaid that 7r1 extends'yg.

NotltroN. rf te extends .ye than we shall denote the reration by te 1,1s.

Deflnition 1.7.1 (Extention Partial Order) The notural partial orilering I on I lor

( t,l[, fl > can be precisely ilefinei| as belouF:

l.VneC,L{rJrcJT,

2.Vt €f \{J-,T}, J-{r{.t1T,

3. il'ltr?a € I are complea then 1a <,lB ifr

(o) for each path 1 rnrt...rnli ) of "lB, there h a path ( 11, ..,, li ) of 1a such thot

^tA/ <h,...,1& > 3ta/ 1rnrr...tnlh) whereir<k<i,

(b) lor ererg reentroncgb;r...,prlra of 7s there is a corresponiling reentroncybi,...rpnhe

in'1.e.,

The efect of the condition 3(b) above is that

6Thie deffnition ie eesentially the dual of Pollardta definition of tr iu [Pouard, 19g4] except for the reentrancy
handliag pa.rt.



[Eborn X01 TokyO]

[home X01]]

extendS(≦ )

[[boru Tokyol
lhorne TokyoJJ

This is so because the feature structure with the reentrancy is more informative than the

one above without the reentrancy. In other words, a feature structure with t'the same value"

extends the feature structure with "the similar value". Because reentrancy is included in our

definition of J, the set ( t, J) is not exactly the same as the lattice ( l,IL fl > which,

v

we discussed previously, that is so because our original formulation of unification operation'

provided at the beginning of the chapter did not take care of reentrancy' Eowever, it is easy to

see that ( l, J) is a iattice, given that it is closed for T and I (i'e, l,V 'ls and 'y' A'y, exist

for any .ft,,fs QIt where V denotes jofz (least upper bound) and n denotes meet (great'est lower

bound) . We will also provide a framework for unification operation that handles reentrancy in

the later parts of this thesis. Then ( I,L[,fI ) will be the same lattice as ( f,<>'

our definition of extention malces it clear that J is a pa"rtial order' This is so because we

can see from our definition that for 1at'lB € r' it follows that (1) te3te; (2) te { "ye and

,lB <.lA*'l^a,:'lli (3) rn J'ys arrd Ia :.'fc +'lA 3''rc'It is not a complete ordeT'

however, since not every feature structure in t is in an extention relation'

The duol of the extention relation is the subsumption relation. % subsumes 'ys if ?a is less

informative than'Ys.

Nor.[TroN. If ,yr1 subsumes ?8 than we shall denote the relation by 1A E'|,B'

Deflnition 1.7.2 (Subsumption Partial order) Theportiolorilering E ozI conbe ilefineil

os the iiuol of 1, tlrct is, lor lt,^fa €1,'lAEta ifr ''la 1^lt'



Figure 1-? is a conceptual diagra"rn of a lattice of feature structures. Note that [] is put at

the top of the lattice. Therefore, the higher the location of the lattice, the less informative (or

more general) the feature structure becomes.
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Below are the examples of the subsumption iel就 10n taken fr6m lshieber,198d(but using

our notttional convention).The Ltture structures provided ettlier subsume dl the Lature

structures provided ltter in these examples.In other words,the subsumption relation l匡 2E

3E4E5E6holds。

1.
n

2.
[[category NJJ

Figure 1-7: Lattice of Feature Structures
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3.
[lcategory N]

[agreenent [lnunber

4,
llcategory NJ

lagreenent [[number
tPersor

5

singu■RT]]]]

[lcategory NJ

[agreement llnnnber singularJJ
lpersou thirdll

[subject [ [nr:ruber singularl
lperson thirdlJll

singu■ar]

third]]]]

[[number singula.rJJ
lperson thlrdll

／ｋ

6。

[Ecategory N]

[agreement X01

[subject X01]]

1.8 llnification and Generalization Revisited

Unification is the least informative feature structure which contains all the information from

both feature .stryc.turgs (but no additional information). By using the notion of extention

partial order, we can say that uniflcation is the least informative feature structure thata'ft
extends the two feature structures. (That is, it is the greotest lower bounil of two feature-\

structures with respect to the extention ordering {.) Thus, unification of two feature structures

'),rt and 7s is the least informative feature structure 'y6r that 1C < 'lA and 'y6r 4 ''la' Since

extention and subsumption are duals, unification can also be defined as the most informative

feature structute which is subsumed by two feature structures. That is, the unification operation

returns the most informative feature structure'ycr such that 7,1 f 7c and 18 E'Yc.

28
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Similarln generalization can be defined using the notion of extention partial ordering. Gen-

eralization is the mogt informative feature structure that subsumes the two feature

structures. That it, ?c : % fi ts it tc is the most informative feature structure with which

.lc E.lA and 76' tr ?B holds.

Note that by our definition of the subsumption relation, a reentrant feature structure extends

a non-reentrant counterpa,rt with similar values. Therefore, the unification of 1a and ?a in

Figure 1-8 is 1e.

fnA

"A,o ar roY:\Ixx\./(/
I.A I-n X

ロ

Figure 1-8: Uniff.cation'of same values with similar values

The important properties of the operations on feature structures are that unification always

adds information and generalization always subtracts information (unless two feature structures

are already in the subsumption relation). Because of the monotonic information combining na-

ture of unification, unification has been chosen as the central and often only operation on

feature structures in many theoretical and computational models of language. The linguistic

29



theories that use unification as the central (or only) method of capturing linguistic constraints

are collectively known as "unification-based" theories' GPSG, LFG, FUG and EPSG are some

of the well-known examples of uniffcation-based theories. Below is the summary of the prop-

erties of unification which form the basis of formal representation of linguistic constraints in

unifi cation-based theories.

Monotonicity: unification always adds information and never subtracts information' By

definition, the result of uniffcation is always subsumed by the two input feature structures'

This property of unification is the reason that unification is used as the basic tool of

combining information in many linguistic theories' (f

order Independency: since the unification operation meets the laws of idempotency, com-

mutativity, and associativity, the order of unification operations is unimportant' This

makes the feature structure and unification operation useful tools for capturing linguistic

constraints declarativelY.

flndecidability: The unification of two feature structures may be inconsistent (r)' Two

feature structures may contain incompatible information (incompatible paths)' When

the unification of two feature structures is inconsistent, it is conventional to say that the

uniffcation /ails. We also say that the unification is unileciileil when it is I. Because--

the unification may fail, the unification operation can be used as an apparato' to 
"hutkt(

. constraint satisfaction as well as to combine and propagate constraints.

We have seen that the usual formal laws of idempotency, commutativitn associativity, and

absorption hold on unification forming a lattice. Eowever, one final note here is that as we have

seen before, feature structures are not distributive on unification and generalization. Therefore,

if the generalization operation is adopted as a part of a constraint'chebking mechanism, the
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order of the applying generalization and uniffcation would become important. This is part of

the reason that generalization is not commonly used in computational models of language. 6

cDiejuuctive operationa however, would be diatributive with unification forming a ditributive lattice with
uafication. For exemple, Polla.rd and Sag eay about the distributive nature of unification aud diejunction of
feature gtructuree that the exteotiou ordered lattice of feature atructures form a distributive lattice, i.e., 71 V
(fzufr) = (?rV?2)U(?rV,yr) and,ylU(,yzV,ys) = (trUfz)V(frLl?s). Thus many ayatema that ueefeature etructures
uae diajunctive feature atructures. Eowever, the feature atructurea in this theais are not diajunctive. That is
becaugc non-diajunctive uniffcation algorithma can be extended into diejuuctive oneg by either 1) modifying the
algorithm itself, 2) opening the diajunctivefeature gtructureg iuto cross multiplee,3) treatiog the disjunctive part
and non-diejunctive part eeparately. The third method war developed by lKasper, 198?l a.od our experimenta
ghow that it is the begt method for a la,rge ecale grn-mar. We have seen that the major portiou of the uaification
operation during a parse of a la,rge-rcale grarnmar ie occupied by proceaaing the non-diajunctive part (normally
more than 95 percent) while very little ia occupied by proceaaing the diajunctive pa.rt (lesa than 4 percent or ao).
Thua, it makee eease to adopt Kasperta method and proceaa the diojunctive part reparately inatead of making
unification algorithma heavy by introducing the capability to proceceilg diojunctive feature etructuree.
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Chapter 2

Graph unification in Natural

Language

2.L Feature Structure GraPhs

Feature structures were chosen as the formal objects for representation of ringuistic entities in

modern theoretical and computational linguistic theories such as Functional unification Gram-

mar (FUG [Kay, 1984]), Lexical Functional Grammar (LFG [Bresnan and Kaplan' rssz])'

Generalized Phrase Structure Grammar (GPSG [Gazdar, ei ol, 1985]) and Eead-driven Phrase

Structure Grammar (EPSG [Pollard and Sag, 198d) and are commonly known as feoture tt'u'Q(

lures which are feature-theoretic structures of feature/value pairs. For example, an EPSG-like

lexical entry.'for the word lquglw may look like this:

t[Pnou laughsl
tcAT ttEEAD [[MAJ verb]

[vFont{ ftulte]
IAUI rniuus]
IINV niuus]
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[PRD minus]]]

[SUBCAT [[FIRST [[CAT [[HEAD [[MA」 ュot・n]

[NFORH nom]

[PERS third]

[NUM s■ ng]]]]]

X01]]]]][CONT [[ARGl
[REST end]]]]]

[CONT [[RELAT10N laugh]

[ARGl X01]]]]

By representing mappings captured by feature structures a{, arcs on nodes, directed graphs

&re commonly used for both graphic and computational representation of feature structures. In

directed graph representations, feoturu are represented as labels on the directed arcs and lolues

are represented as nodes. Generally the labeled directed graphs used to represent linguistic

feature structures have the following properties:

o .A,rcs represent features: Each feature in a feoture structure is explicitly represented

by a corresponding arc in the graph representation of leature structures.

r Arcs are labelled: Arcs are labeled to represent feature labels.

o Arcs are unordered: The order of arcs in the same level of a feature structure graph

is irrelevs,nt to the expressed content of the feature structure. Thus, the order of arcs

contaiued in the.nodes has no significance. (That is, arc lists in the nodes are actually

refs, not listc) .

o Arce are directed: Feoture structures are partial functions mapping features to values.

Since this mapping is unidirectional, the arcs representing the mappings are directed.

o The number of arcs is not flxed: The number of mappings from features to values

captured by a feature structure can be finitely many. There is no fixed limit on the

number of arcs in a feature structure.
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Nodeg represent feature values: A node represents either: 1) an atomic value 2)

a complex value or 3) a variable. Variables need to be represented speciffcally as nodes

(feature structure) since a variable may be shared by multiple paths (reentrancy).

Graphs may contain convergence: A feature gtructure may be reentrantl therefore

a feature structure graph may contain a convergence.

電

- o Graphs may contain cycles: A path in a feature structure may be cyclic either

because gremmar allows for cyclicity or because the unification of two reentrant feature

structures creajed a cycle.

(
The last point about cyclicity requires some explanation. Our definition of feature structuret*

in the previous chapter did not include the nature of cyclicity. In fact, most unification-based

theories aEsume feature structures to be acyclic. However, some grammax formalisms allow for

cyclicity in constraint graphs. The ATR grammar that we used for experiments for this thesis is

one of them. Also, it is often easier to represent some linguistic phenomena using cyclic feature

structures such as constraints on relative clauses even with grammatical formalisms that assume

no cyclicity. Finally, unification of two reentrant feature structures may result in a cyclic feature

:

structure even if the input grammar specifications did not have cyclic paths at all. Thus, it is

safe to assume that feature structures may be cyclic even if the grammatical formalism did no!,
(

assume cyclicity. Therefore, feature structures need to be represented as directed graphs (dgs)

and not as directed acyclic graphs (dags) if we would like to design a upification-based systems

with robust behaviour. In fact, our definition of extention ald subsumption in the previous

chapter already included the possibility of cyclic feature structures. Hereafter in this thesis, we

assume feature structures to be directed graphs and not acyclic directed graphs.

Below is an example of grammatical rule entries taken from ATR's grammar [Takahashi,
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1)

2)

et aI, L9921. The first rule formalizes the subcategorization principle and the second rule

represents the adjunct (or COE) principle in JPSG. Although neither of the rules are cyclic

(only reentrant), a cyclic feature structure will result when these rules are combined (unified).

Given that these are very frequently used rules, it is important that natural language systems

using a gra:nmar like this one accept cyclic feature structures and handle them effEciently.

(syn subcat) = (dtrs 2 syn subcat rest>
(dtrg 1 syr head coh) = (dtrs 2 sy! sub cat first>

(dtrs 1 sy! head coh) = (dtrs 2)

These path equations indicate the convention that paths equated by : point to the same

node (variable). That is, "fol < syn subcat ): .lo/ 1 iltrs 2 sgn subcat rest ), etc. The

resulting graph of the unification of the rules looks as the following (taken from [Takahashi, et

af, 19921):

Figure 2‐ 1:Gralllmatical rule with a cycle

frrdj
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2.2 The Nature of Graph Uniftcation

While the unification operation has been popularly adopted as a basic tool in theoretical and

computational models of language, the design of an efficient unification mechanisms has not

been an easy task. Normally, unification is by far the most computationally expensive part

of natural language systems. For example, considering the time-efficiency problem alone, in

typical large-scale systems such as [Morimoto, el al, 1990], ?5 to 95 percent of parsing time is

occupied by unification alone. Also, designing an efficient unification operation that meets the

properties of. feoture structures listed in the previous section is not an easy task. Recall that

these properties include 1) order independence, 2) unfixed number of arcs, 3) convergence, anf
\(

4) cyclicity. Below are some of the essential criteria that a graph unification method for natural

language processing must meet:

o The input graphs should not be destroyed: The input graphs must be preserved

because constraints are represented by feature structures as rules that are unified against

the feature structures that are produced by input. Since rules are used many times, the

original graph representing the rule needs to be preserved. Also, during the analysis of the

input language, constituent graphs representing the current hypothesis ofthe constituency

are created. Since these constituent graphs are also applied many times against different
(r

hypotheses, these graphs need to be preserved as well. Consequently, in most unificatioht

algorithms, nodes are copied prior to or during uniffcation causing a heavy overhead on

unifi cation operations.

r Graphs may contain convergence'and cycles: As discussed in the previous sections,

feature structures may be reentrant and even cyclic. As we have seen, the possibility of

reentrancy complicates the nature of the subsumption relation as well as introduces the
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bidirectionality of the information flow, since different parts of a feature structure may

be connected by reentrant paths and since whatever happens in one reentrant path must

also be reflected in other reentrant paths. The difficulty of handling cyclicity is even more

problematic, since 1) cyclicity also changes the nature of the subsumption relation and

consequently the nature of unificationl and 2) cyclicity may cause an infinite loop during

a unification. With respect to the problem of a loop: If we perform a vanilla 'occur check'

to avoid the loop, this check would require a scan through the entire graph for one extra

pass; this can be very expensive if a graph is large. Therefore, an efficient method for

graph unification must have a built-in and cheap mechanism for handling cycles.

o Graphs may contain variables: Some feature etructures are variables. Often vari-

ables are introduced to capture the reentrant constraints on the equality of path desti-

nations. Such a construct is frequently used in grammatical specifications of phenomena

such as ogreernent. As we have seen in the previous chapter, variables ([],T) have peculiar

behaviour for subsumption (and therefore for unification). Again, correct and cheap han-

dling of such a behaviour is a basic reguirement for an efficient graph unifiction method.

The difrculty of handling reentrancy, cycles, and variables becomes even more problematic

when they are combined. Below is an example taken from [Poilard and Sag, 198fl (with a

different notation).

dgl

[[a [[a xol]]]

[b X01]]

dg2

[[a X02]

[b [[a X02]]]]
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dg3

[[a X01
‐[b X02

X02]]]

X01]]]]
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The unification of dgl and dg2 will result in dg3. However, Polla"rd and Sag would not count

dgl as a valid feature structurel because they define subsumption differentlS and cyclicity is

not allowed in the graphs. Therefore, this unification would be counted as atfail' by them.

Let us examine the above three feature structures graphically. Figure 2-2 is the directed

graph representation of the three feature structures:

As we can see from the figures, clearln dg3 extends both dgt and dg2, using our defini-

tion of extention/subsumption. Viewing dg3 as the least informative feature structure ,O"ttt_

subsumed by both dgl and dg2 seems perfectly reasonable. In fact, in the current frameworks

of unification-based processing; our definition of subsumption is often adopted and has been

proven useful in many systems (including CMU, ATR, and Tokushima systems). Whether

cyclicity iri the graphs is originally assumed or whether it is an avoidable result of allowing for

reentrancy and of providing a,definition of subsumption that coverg reentrancy, the above uni-

fication result must naturalty be accepted as a.unification success. Otherwise, reentrancy is not

fu1ly processed in unification-based systems. In other words, once a unification-based frame-

work adopts reentrancy and variables, it has no choice but to adopt cyclic feature structures in

order to handle reentrancy and variables adequately. (1

It should be easy to imagine that the design of a unification methodology that covers the

unification of dgl and dg2 to result in dg3 is not trivial. Once cyclicity is allowed for feature

structures, we can have a multiple loops in different places of a feature structure. Thus, it

is important that an efficient unification method provide natural and cheap functionalities for

rThe recent vereions of the HPSG theorS however, aleo treat dg3 ae the valid unification of dgl and dg2

(according to Bob Carpenter, pereonal communication).
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Figure 2-2: Uniflcation resulting in a cycle

handling cycles adequately. We will see in Chapter 4 that one of the main advantages of the

algorithm described in this thesis is the ablility to handle cycles naturally.

2.3 Unification and Parsing

Before discussing the actual unification algorithms, we would like to briefly review a repre-

sentative methology in unification-based natural language processing. At least three methods

are common in using unification during natural language processing. The first method is em-

●
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ployed when linguistic theories such as EPSG are directly implemented. Lexically-oriented

theories such as EPSG assume no separate context-free rule for phrase structures. Phrase

structure rules are implicitly contained in subcategorization lists which are lexically stored.

Therefore, combined with universal principles such as the Head-Feature Principle ([Polard and

Sag, 198?]), which are also represented through leoture structures, parsing is performed purely

through graph unification [Franz, 1990]. The second method which is most popular ([Shieber,

et al, 19831,[Tomita and Carbonell, 1S87],[Morimoto, ef al, 1990]) is employed when grammat-

ical theories such as LFG and GPSG, which assume context free rules, are adopted. Also,

some systems (such as [Morimoto, et af, 1990]) use this method f,or speed, although they adopt-

lexically-oriented formalisms (such as HPSG) by extracting lexically-specified subcategorir"((

tion constraints as context-free rules. In these systems, context-free rules based upon major

grammatical categories (parts of speech) are augmented with unification-based constraints that

specify actual constraints for building up phrase structures. The third method is employed

when graph-based constraints are used in the conceptual memory-based recognition of natural

language inputs. In these systems (which often assume massively-parallel spreading activation

architectures) graphs are propagated in the network of semantic memory nodes to provide syn-

tactic constraint application while performing spreading activation-based conceptual memory

recognition. Eere, we would like to examine the second method, which is the method 
"Uonr"U{ (

in the majority of natural language systems. We will not discuss the first method in this thesis.'

Because the first method has no separate contlol structure other than tlre unification operation

itself. We will not discuss the third method in this thesis either. (Please refer to [Tomabechi

and Levin, 19891, fTomabechi, 1991bJ, [Tomabechi, 1991c] for discussions of the third method.)

In the so-called augmented context-free parsers, grammar rules are provided to postulate

how major grammatical categories (phrase types) combine to create larger phrasal structures

40
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through context free grammars (CFGs). But whereas a context-free grammar allows only a finite

number of predefined atomic phrase types or nonterminols, a unification-based (augmented)

context-free grammar implicitely defines an infinity of phrase types ([Pereira, 1985]). A phrase

type is specified for type X0 by postulating the context free rule X0 =+ Xl, ... ,Xn (where

Xl, ... , Xn represent its constituents), which is augmented by equations specifuing values for

x0/P1,...,X0/Pn. The values for X0/P1, ..., XO/Pn may be atornic as well as cornplexspecified

by Xm/Pm. Thus a rule entry may look as Figure 2-3.

I0 =) 11 ,...,In
I0lP1 = a1

I}/PZ = IL/P1
IOlPi = Xn/Pn

:

Figure 2-3: An augmented CFG rule entry

Here al is an atomic value and Xn/Pn represents the node at the end of Xn through the

path Pn. A sample rule entry using the commonly adopted PATR-II ([ShieUer, e! al, 19ffi])

notation for augmented context free rules looks follows:

I0 =) 11 X2
(x0 cat) = vP
(xl cat) = V
(x2 cat) = N

(r0 head> = (r1 head)
(r2 head case> = objective
<rt head vtlrtrrs> = transitive
(x0 cont) = (xl cont>

Figure 2-4: An augmented CFG rule using PATR-II notation

Here ( Xn .... ) specifies the paths.



Most implementations omit ( Xn cat ) = Cat and specify the major categories directly in

the context-free parts (e.g. VP =) V N) so that parsing algorithms ([Earley, 19681, [Tomita,

1g85l, etc.) can be directly used on the context-free portion ofthe rule entries. Therefore, tules

in most systems look like Figure 2-5:

VP=>Vl{
(x0 head) = (x1 head)
(x2 head. case> = objective
<xl head vtlrpe> = traasitive
(x0 cont) = (xl cont)

Figure 2-52 a standard ACFG notation

The augmentation path equations are converted to graphs when the grammar is read into

the system. These graphs are stored along with the context-free rules. For example, the graph

provided in Figure 2.6 representing the path equation above is stored with the rule VP =+ V

N.

Furthermore, lexical entries (i.e., terminal symbols) are augmented with path equations.

Augmentations are also converted into graphs when the grammar is read into the system.

Figure 2-7 is asample lexical entry for the verb loughs based on the HPSG framework.

Whenever a context free parser fires the rule VP =+ V N' (the subgraph of x0 of) the

Ir
constituent graph, which was stored along with the lexical entry (such us loughs) that fireLl

V, is unified with (the subgraph of) xl in the augmentation, and the constituent graph for N

is unified with (the subgraph of) x2 in the augmentation. If unification fails, then the rule is

killed. If unification succeeds then (the subgraph of) x0 is the result of the rule application. If

VP is used subsequently (for example by a rule S =+ VP), then the x0 path of the result graph

will be unified with the rule augmentation graph.

（′
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objective

transitive

tl
Figure 2-6: An augmentation graph for VP =+ V N

This way, parsing of the augmented context free grammar continues by repeatedly firing rules

and unifying constituent graphs with the rule augmentation graphs. Graph unification performs

the functions of 1) applying constraints (blocking unacceptable constituents and inapplicable

rules) 2) building the larger information contents by unifying two graphs and 3) propagating

information upward in the constituency (the bar levels [Jackendoff, 1977]). Everytime a rule is

fired, graph unifications between a rule and a constituent occurs for each Xn and therefore, the

number of unifications performed during a parse can be massive.
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v -> <1 a u g h s> {t\_\
<x0 head vform) = finite
<x0 head aux> = miuus
(x0 head inv) = minus
<x0 head prd) = minus
(x0 subcat first cat head nform) = nom
(x0 subcat first cat head. pers> = third
<x0 subcat first cat head num) = sing
(x0 subcat first cont argl> = (x0 cont argl)
<x0 subcat rest) = eud
(x0 cont relation) = laugh

Figure 2-7: a lexical entry for lotghs
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Chapter 3

Past Representative Methods

3.1 Pereirats method

Pereira ([Pereira, tSAf]) proposed a method of directed acyclic graph (dag) unification based

upon the notion of structure-sharing. The basic idea behind his scheme is that an original

dag and the result dag can share the information (structure) except for the information that

modified the original dag as a result of unification. Therefore, a result graph is represented as

a combination of the original graph and the information that represents the changes that are

caused by unification.

I gkeleton | (.- Poilter to th€ original dag atructure
+- ------ -------- +-- -- -- ---- - - -- -+
|

|

|

I reroutiag | (.- foryardilg poilter
+ €[Vironm€nt +---------------+

I arc-bindilg , I (-- r€v arca to be added to create regult
+---------------+---------------+

Figure 3-1: Pereirats Data Structure

In this scheme, a dag is represented by a skeleton and an enaironrnent. Skeleton represents

45



the (pointer to the) original dag. Enlironment contains the information that represents the

changes to be made in order to create a result dag'

(6

Figure 3-2: Forwarding OPeration

Specificatly enrironment contains reroutingand arc binilingrwhich represent the forwarding

information and new arcs to be added to create the result, respectively. Forwarding redirects a

reference of a particular graph node to some other node. In Figure 3-2, the reference to the top

node of the left graph is forwarded to the right graph; therefore externally the content of the

left graph looks like the content of the right graph. This operation of putting the forwarding

pointer on a node is called a forwariling operation; following the pointer to return the intended

content is called ilereferencing. In Pereira's method, when two graphs (dag1 and dag2) are

unified and if recursions into shared a.rcs succeed, then dagl's highest (root) node is forward&

to dag2's highest node (as in the ftgure). This forwarding pointer is saved into the rerouting

content of the eisironmenl. Also, the complementarcsl in the highest node in dagl and the

highest node in dag2 (i.e., the arcs with labels that exist in dagl but not in dag2) are added

to the orc-binilingfield of entironmenl to represent necegsary changes for producing the result

rAs we defined in Chapter 1.

1

k*"ro d92
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graph based upon dag2's skeleton. This adding to the biniling content of the enaironment is

performed at all depths of recursion so that a result graph can be created (when necessary) by

looking at the dag2 nodes and referencing the environment. This way, no copies at all are made

in his'method. Instead the result graphs are dynamically created when the graph is needed

later. Below is Pereira's algorithm taken from [Pereira, 1985] (snghtly modified to make it

up-to-date):

PpnslRAtg Arconrrnu

FUNCTION unify (dag1-underef,dag2-underef);
dagl +- dereference(dag1-underef);
d42 * dereference(dag2-uaderef);
IF (dagl =r dag2) TIIEN

return(dag2);
ELSE IF (dagl =s Top) THEN

forward(dagl,dag2);2
return(dag2);

ELSE IF (dag2 =-r Top) THEN
forward(dagl,dag2);
retura(dag1);

ELSE IF (dag1 and dag2 a.re atomic and the valueg are equal) TIIEN
forwa,rd(dagl,dag2);
return(dag1);

ELSE IF (dagl and dag2 are complex) THEN
gha,red e- intersectarce(dag1,dag2);
ae\tr .- complementarce(daglrdag2);
forward(dagldag2);

FOR EACH a,rc fN shared DO
u+ily (deatination of

the ahared arc for dagl,
degtiaation of

' the shared alc for dag2);
If all recuraive calla returned succesgful THEN

put new in the arc-binding ofdag2 ia e;

return (dag2);
ELSE return I immediatdy

END;

This way, the structure-sharing scheme essentially evoids copying of nodes since original

nodes are preserved using the skeleton and environment. However, the cost for these char-

acteristics is rather steep. That is so because there is an inevitable drawback of this scheme

zln Pereira'g data structure, forwa.tding ig done to add the rerouting information to the envirooment e.
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due to the enoironment storage scheme. The drawback is the fixed cost log(d) overhead that

is required fot all node accesses. The reason for the cost is that the information concerning

each node is represented distributively in the enrtironmen{ every time a node is accessed, the

en ironmenl has to be looked up in order to update the skeleton assoiiated with the node so

that the required feature structure is dynamically created. In other words, for any operation

accessing or manipulating a graph, there will be a fixed log(d) overhead (where d is the number

of nodes in the graph) associated with each node in the entire graph in order to assemble the

whole graph from the skeletonand the enrironmeni. Thus, although Pereira's scheme effectively

avoids excessive copying, the trade-off required for his scheme is expensive.

C

3。2 Knrttunen's inethod

Karttunen introduced,ュ algorit、 In bas,d lpo,the nOtion of reυ ersibrl u.lβ catiO・ (lKarttunen,

1986bl).Ee reportS in IKarttunen,1986司 that thiS Simple rθ υθrg:3:ど ● IⅢ6d il■ore efFect市e in

reducingpargingtime thm the previous methOdS IKttttunen ttd=こ 10851‐and IPereirL 198司 .

The basic idea behind reversible unincation is that when a dest,uCtive change is about to be
:11       11‐  ■ |■ |■

.|||      
‐

made,the contents ofthe oijnd graph atr,1町 ed,ⅢⅢ,9Ⅲ嵐aftti a destructive unincation,

copies can be created froln the reeult Ofthe destructive uliflcati6五
and all destructive changes

can be undone by restoring the graphs,■ sing the inf6rlnation iaVed‐
Pri°ll?tle deStructivt

operttiongo ln his D― PATRimplementttio1 0freversible uninctti6五
3:Karttunen us,,tWO arrays

to saVe the o五 ginal informati9n. In One arrayD(pOinters to)node Structures are stored prior
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gtructures are going to be changed). After the top-level uniffcation operation is done, the

nodes are restored by setting the values saved in the a,rray. Copies are made after a successful

unification and only the necessary nodes are copied to create a new dag. Since Karttunen

actually creates a copy after a successful unification (whereas in Pereira's scheme no copies are

created and a dag is assembled every time it is needed), once the copy is created there will be

no log(d) overhead for node accesses associated lvith Pereira's algorithm. On the other hand,

there will be a cost of saving the dag structures and their values prior to destructive operations

which is proportionate to the size of the input graph. There is also a cost of, reaersing the

unification operation every time uniffcation is performed which is also proportionate to the size

of the input graph. Thus, if the size of the input graph grows theu the cost of saving and

reversing changes can be high.

3.3 Wroblewski's method

Wroblewskillg87] introduced a different scheme based upon the notion of incremental copying.

His algorithm is known as "Wroblewskits nondestructive unification scheme" and has been con-

sidered as the fastest graph-unification algorithm. The basic idea behind his scheme is to create

copies incrementally during unification only when such a need arises. It is a combination of a

destructive unification algorithm unifyl (similar in its control structure to Pereira's algorithm)

and a nondestructive algorithm unify2 in which copies are created incrementally. Unifyl is

called only when either (or both) of the highest nodes of the input graphs are current copies

of other nodeg (so that they can be modified destructively without losing the original grammar

and constituent graphs).

As a data structure, a node is represented with four fields: tforward', 'arc-list', 'copy', and

'status'. 'The forward' field contains (a pointer to) another node which the node is being
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forwarded to. Arc-list contains the list of arc structures (i.e., mappings to other nodes). In

addition to these two fields common in graph-based algorithms, Wroblewski's gcheme has the

added fields called'copy'and'statust. In'copy'fields, the pointers to copy nodes that are

created incrementally during unification are stored. (Status' field containq a flag that indicates

whether or not a particular node ig part of an original graph (i.e., whether it is an original

node or a copy of some other node). Later implementations of his algorithm (such as the

one implemented in [Morimoto, e,t al, 1990]) use mark (or generation) field in place of status

field. The mark field contains an integer which determines the cufrency of the copy node by

compa"ring it to a global counter which is incremented every time the top level unification is,

called. The representation for an arc is a standard one. It is a pair of 'Iabel' and 'value'. 'Label'k

contains an atomic symbol (i,e, a feature) which labels the arc, and 'value' contains another

node structure.

1

f,ODE
+-- - -- -- - -------+
I lorcard I

+---------:-----+
I arc-liat I

+---- ---- --- ---- +

+-- -- --- - -- - --- - +

I status I

+-- - --- -- -- -----+

lRc
+---- - -- ---- - ---+

+----- ----------+
I value I

+-----------,---+

Figure 3-3: Wroblewskits Data Structure

In Wroblewski's algorithm, unify2 first receives the input dags. If both of the highest nodes

do not have copies then one copy node is created. This copy node is stored in the tcopy' field

of the two input dag nodes. Also the 'status' of the copy node is set to be "copy". Then two

set-complement operations are performed to produce two sets, i,e., neudl ar.d' neud2. Newill

contains the set-difference arcs of dagl and dag2 (i.e., arcs with labels that exist in dagl but
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not in dag2). NewilL contains the set-difference of dag2 and dag1. Also another set shared,

is created which contains a set-intersection of dagl and dag2 arcs. Then for all arcs in the

set shoreil, the destinations of the shared arcs from the dagl and dag2 are recursively unified.

Every time one recursion to a shared arc succeeds, the shared arc with the new value (result

of recursion) is added to the copy node. If all recursion succeeds copies of arcs in both neuill

and newd2 are made while the'copies'of nodes contained within the arcs are respected. The

copies of the union of. newill and newilL are placed in arc-list of the copy node. This is the

nondestructive incremental copying scheme in Wroblewski's unify2 algorithm. Also, if either

(or both) highest input graph nodes is a copy, then all of this is bypassed and the destructive

unifyl is called, adding the changes directly on the copy nodes.

Below is Wroblewski's Unify2. Unifyl is the same as Pereira's algorithm. The only difference

from Pereira in Unifyl is that in Wroblewski's algorithm, forwarding is done by directly putting

the forwarded node in the 'forward' field of a node instead of storing it in a enaironmenl. Also

when complementarcs (dagl,dag2) are stored into dag2 after successful recursive calls, 'new' is

stored directly into the 'arc-list' of dag2. Thus, Wroblewski's Unifyl is a destructive version of

Pereira's algorithm. In the Wroblewski method, Unifyl is called only when either of the input

graphs is a copy. Therefore, there will be no modification made to the original graph. Below is

Wroblewski's Unify2, which copies incrementally while unification progresses:

WnosLswsxl's Urtrv2

FUN CTIO N unify2 (dagf -underef,dag2-underef ) ;
dagl e dere,ference(dagl-underef);
dag2 r- dereference(dag2-underef );
IF (dagl =r dag2) THEN

return(dag2);
ELSE IF (dagl =t Topl THEN

forward(daglrdag2);
return(dag2);

ELSE IF (dag2 =y Top) THEN
forward(dagl,dag2);
retura(dag1);

ELSE IF (dagl and dag2 are atomic and the values are equal) THEN

■
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fotward(daglrdag2);
rctura(dagl);

ELSE IF (dagl'copy asd dag2'copy are empty) THEN

copy F (create-node);

copy.rtatua.- tcoPYnl

dagl.coPY {- coPY;

dag2.coPY {- coPyi

aewdagl {- complernetrta'rco(dag1'dag2);"oilG; t 
"o-Plt-"nta'rca(dag2.'dag1);ti*"a".- intersecta'rce(dag2'dag1) ;

ion n,c.cH arc IN ahared Do
- - 

tu'"rt r- uuifv2(dea"11l"l#* 
arc for das1,

deetination of-----lth" ghared arc for dag2);

coPY.a'rc-liat r- reeultl

FOB, EACII """ 
fNlo"io" nemdagl'uewdagz) DO

tecursively copy the value of :u"h T"
hooo,iog oitii"g copiee within' and place

this vslue in coPY

returu(coPY)
ELSE IF (ilagl.copy xot dag2'copy ie non-empty) THEN

unifYl (dagl'coPyf as2)

r";iT"(t::t:Hli and dag2'copv af e tr on- emp tv) TH EN

unifYl (dagi'coPYdag2'coPY)

END;

そ

Below is an example of his nondestructive unification taken from [Wroblewski' 198fl' In

the folrowing series of figures, dashed rines indicate the contents of copy field. Darkened circles

represent original input nodes and hollow circles represent nodes which are current copies' we

quote (with slight modification in terminology) his explanations in order to walk through his

unification algorithm'

,,First figure shows (Figure 3-4) the state of unification after the path ( a'b ) has beef

followed during unification. unify2 has recursed twice and returned to the top node; three new

nodeshavebeencreated,ones.copyoftheroot'oneacopyofthenodeonthepath(o}and

the last a copy of the node on the path 1 a,b )' The copy field of the appropriate nodes in

dagl and dag2 have been filled with the copy nodes' as indicated by the dashed lines'"

,,In Figure 3-b, unify2 has follwed the path < d > on the argument dags' But notice that

thenodesattheendofpath(o>andattheendofpath(d>indag2arethesa'me;acopy
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Figure 3-4: Wroblewskits method: Snapshot 1

of this node was previously made when traversing the path ( a, D ), and so this copy is reused

rather than allocating a new node. Subsequentlg an arc labeled 'e' is added to this reused copy.

Finallg Unify2 recursion unwinds back to the root node of both dags.,'

Figure 3-5: Wroblewekits method: Snapshot 2

"In Figure 3-6, Unify2 has added the arc labeled 'g'in dag2 to the result graph, making a

copy of the subgraph at the end of that arc and placing it in the result graph. Notice that the
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subgraph dagzl< g,,h)

dag1."

wascopiedeventhoughthereexistednocorrespondingsubgraphin

It

Figure 3-6: 'Wroblewgkitg method: Snapshot 3

Cr

As discussed by wroblewski [198fl only 6 new nodes and 6 new arcs are created in the above

unification. In a naiive destructive unification which uses unifyl, 10 nodes and 9 arcs would be

created as copies of dagl and dag2 prior to calling unifyl' This way wroblewski successfully

reduced the number of wasteful operation (unnecessary copying) by introducing the incremental

copying scheme. since wroblewski directly places nodes in the copy and arclist of the nodes'

no structure.sharing based on entironment is performed. Therefore, there is no fixed cost tog(d)

overhead as associated with Pereira's algorithm for accessing the nodes' Also, changes in tn{f

copy field can be cancelled constant time by invalidating the copy field (for example' by using

generation counters), therefore, there will be no cost for reversing the destructive changes which

were associated with Karttunents reversible unification'

Thus, the nondestructive unification algorithm wa's a'n immediate sfccess and was immedi-

ately adopted by natural language research laboratories around the world' Of course there was

some disadvantage to Wroblewski's scheme. Over-copying does occur in some cases' for exam-
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ple, in some conffgurations where dagl contains a variable and dag2 contains a convergence on

a variable ([Wroblewski, 198d). Also, we will be discussing the inherent 'early copying' prob-

Iem of the incremental copying echeme. Eowever, despite the shortcomings of his methodology,

until recently his method has been accepted as the most efficient method for graph unification.

Later, Kogure and Kato ([Kogure, 1989J) developed a version of Wroblewksi's algorithm which

extended it to handle cyclic feature structures. Their method was to check whether an arc with

the same label already exists (i.e., so called "occur check") when an arc is added to a node. If

such an arc already exists, destructive unification (unifyl) is called for the destination of the

existing arc unified against the destination of the node beeing added. If such an a.rc does not

exist, the a.rc is simply added. FortunatelS their scheme for handling cycles in Wroblewski's

framework is not costly (since it does not need to scan through the entire graph for occur check).

Thus, Wroblewkski's method is also used by projects (such as ATR) that require cyclic feature

structures.

3.4 Kogurets Method

The success of the incremental copying scheme proposed by Wroblewski led to a few research

efforts based upon the incremental scheme. Among them, Godden ([Godden, 1990]) introduced

a version of the incremental copying scheme in which he used a lazy evaluation technique for

programming languages (Such as in ileloy, force in Scheme) and treated dags as active data

structures. In Godden's method, evaluation for copying was delayed, using delayed streames,

until a destructive change to the node is to be performed. At that point, copying is forced

to perform the necessay copy operation of the original node. This wa5 copies are created

incrementally during unification using lazy evaluation. Although using lazy evaluation to delay

copying seemed a straightforward answer to some of the problems of Wroblewski's method,
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Godden's method was never favorable to efiEcient implementations of Wroblewski's original

method. Firet of all, delayed evaluation is not a cheap operation. The cost of creating delayed

closures is a potentially costly operation. Secondln some of the burdens of excessive copying

were simply replaced by creating closures using lazy evaluation. Since delayed closures may not

be needed at the end of a unification to create a result graph, some closures delayed on a lazy

stream gimply get wasted. Thus, although, some copies that were originally wasted by creating

structures for nodes were avoided, other wastes were produced by closures that were not forced.

Kogure [1990] introduced a different laay incremental unification scheme by using depen-

dency pointers instead of delayed closures. In his scheme, nodes to be copied contain a backward
(

pointer (called copy depenilency link) to the mother node of the graph, so that copies are not'

created from higher regions in the graph to the lower regions in the graph; instead, copies are

created from the lower region in the graph. This scheme avoids copies of nodes whose subgraphs

were never modified. As a result, an unmodified subgraph of the input graph is shared with the

original input graph. Thus, Kogure introduced structure-sharing to the incremental copying

scheme. Ee found that some subgraphs copied in Wroblewski's scheme did not actually need

to be copied. Figure 3-7 is the example taken from [Kogure, 1990]:

Since the subgraphs E, F, D, in the figure were never modified, Wroblewski's scheme clearly

overcopies them. Kogure introduced the copy ilepenilency pointers stored in the nodes to ensure,

that copying of the nodes was delayed only until the children nodes were modified and virtuallyl

eliminated the redundant copying in Wroblewski's algorithm. UnfortunatelS Kogure's method

also has its trade-offs. They are due to the need to maintain lhe copy ilepenilencypointers in

each of the nodes in the entire graph. In Kogure's method, each node has an added field called

the copy-ilepenilencyslot, in which the list of pairs of mothers and the arc structures connecting

mothers to nodes are stored. Thus, in addition to the need for an added field, this list of the

(つ
ハ
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1

dgl copylng copylng dg2

dg3
b

X← X'

Figure 3-7: Kogurets method avoids copying E,F,D.

garbage-collectable additional 'conses' (node arc pairs) are stored in copy-ilepenilency. Thus,

by ma^king incremental copying, in order to avoid redundant copying of unmodified subgraphs,

Kogure had to introduce a bidirectionality in the entire directed graphs of feature structures;

this could be steep if graphs are very large. F\rrthermore, there will be a need to traverse the

graphs upward the dependency pointers to make the copies which in return may result in another

traversal to make further copies. In other words, his algorithm can avoid redundant copying of

unmodified subgraphs, but it will need to traverge twice on a modified subgra-oh - once to unify

and once to copy, traversing the dependency pointer backwards. Therefore, in the worst case,

his algorithm becomes a two-pass operation, when the advantage of incremental copying was

that it was a one-pass operation (once to traverse down to unify and copy incrementally). Thus,

動
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Kogure,s algorithm should be favorable to wroblewski's when the input grammar contains large

subgraphs which are rarely modified, then gains by structure-sharing of unmodified subgraphs

more than offset the need for added data-structure and added garbage collections' Ilowever'

if the grammaf's behaviour was designed to modify graphs frequentln then the need for extra

traversal can be considered very costly, making it disadvantageous compared to Wroblewski's

odginal algorithm.

3.5 Emelets Method

Emele1991 a180 introduced a meth6d btted upoh inCremental,Opying Ⅲd lMy Oper■ ion Oで|

cOpying. He called his scheme Lazy lncremental Copying. His lnethod is a cOmbination of

WroЫewski9s incremental SCheme and the structure― shanng idea・ of Pereira. irhe lncrementd

cOpying algorithm itself is sllnilar to WIoblewski's:however,lazy copying is introduced to delay

the copying of■ odts so that copying is done only when the destructiVe cha■
lge is ttbout to hap―

pen. Godden used delayed evaluation for delaying copying,and Kogure used copy―
dependency

13inters tふ atitt topying・ Ёmelt iξ os a series Ofwiat it talis ёir61o16はical dereference chains

il‐ 6:lei to ttakt aよ五yed c8pシ i五:5ossible.Itt ord`i to tvall品
とЁ五ιle'o sdhё mt,we need to

Lしlarate the iicrtmental copyi五 意 1議t of hiS algOrithm and the attta structure based upon

chronological derefence chains which resembles the last-call optimization technique of Prolog( (

(畠 i五 IWarien,16な Ol)。 As is thё c島6 With Pereiia's tiヤ lion血さnt ttd 61ёletOi methOd,Emel♂ s

sthelne f6r chrb五 ological dereferenこ o is a data=structtre tethniouO and is indё
pendent of the ac‐

ttal uniitati6五 algorithtt itjё if.Itt other wordO,it ij,6osible to c6血 bi五I Emele's chronological

dtrさ艶FenCe ζchこme■ith an,6thtr i面 icatiott dg6rithms ihcludi五 をthご 6nё we ae pro,OSing in

tht next ch五ltei ii thiS thOsiso Whethei suCh a cOmbinaHon is a g66d idea oi not is a difFerent

qutstion。 lt wotld l■ obめly dep6nd bn the kind Of grammtt With青 卜ich that uninc就 1。 n is
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intended to be used.

What Emele does in his chronological dereference scheme is to adopt Pereira's structure-

sharing idea, but instead of using a global branch environment, each node records its own

environment. The chronological dereference is performed by following the chain of forwarding

pointers based upon the enrironment list which decides whether a forwarding pointer should

be followed or not. Ln enaironment is represented as an ordered sequence of valid generation

counters (such as 1Lr2r3,4, 5,6... >). The current generation is defined as the last element in

this sequence.

Figure 3-8 taken from [Emele, 1991] is an example of a chronological dereference chain.

It illustrates how dereference works with respect to the environment: "Node b is the class

representative for environment < 0 ), node c is the result of dereferencing for environments

( 0, 1 ) and ( 0, 1, 2 >, and finally node f corresponds to the representative for the environment

( 0, 1, 2,3 ) and all further extentions that did not add a new forwarding pointer to newly

created copy nodes".

q…■ …裁…t…規 T¨つ

Chronological deref erencing

く0)= b
く0 1)= c
く0 1 2)= c
(0 1 2 3> 〓 f

Figure 3-|:■ aVersing Forwarding H」にs ac99=`1■g tO θηυjrO■ mθ″

with this methOd 6f`hrOn010gital derefeiё ttcittgand l。こally represehted en宙 ronment,Emele

erectively attained a data structure that supp6rtO structuFe― sha五ng and aャ oids the pOtentially



complex operation of merging environments in Pereira's structure-sharing scheme- Ile com-

bined this data-structure with Wroblewski's incremental copying scheme and called it a "Lazy

Incremental Copying" scheme.

What follows is a walk-through of how this happens in his Lazy Incremental Copying scheme

using the example input graphs below (Figure 3-9).

dagl
く0>

dag2
く0>

. 
Figure 3-9: SamPle inPut graPh

Figure B-10 shows that copies with generation 1 are created incrementally while uniffcation

progresses. Since everything needs to be copied there is no structure-sharing of nodes. Note

that in Emele's scheme, as in Pereira's scheme, arcs ate not copied. Instead the result graPh

dag3 comes with the entironmenf < 0,1 ) so that subgraphs of dag3 are created by looking at

the environment and traversing down dagl.

Figure 3-11 shows the unification of the result graph dagS with a new graph dag4.

Note that arcs (a 0) and (b 0) of dag3 are simply placed in dag5. Some copies are mad(

(the Ones numbered"ith generation 2)since destructivё
 changes were to be lnadeo After the

unincation dag5 can be constructed by following the Origlnal graphs stored in dag3(which iS

actuallナ digl)ana by lerbrmttξ the chiOn016は icd dtietrettcing On‐ the sibgraphs。

This wayD P響
‐,19‐,ucc,'Sキlly撃■

blled w■Oble■skPs incremental scheme with Pereira's.        ||■
, |

structure sh田 1■g,中eme t9 COttbine the adl陽 ,tages of the two.On the Other hand,he also
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dagl
く0>

dag2
(0)

0⌒
f

dag3
く0,1>

Figure 3-10: dag3 = dagl l-l dag2

combined the disadvantages as well. The disadvantages of Wroblewski's incremental scheme,

which is inherent in incremental method and is shared by Godden, Kogure, and Emele, will be

discussed in the next chapter. The disadvantage of the structure-sharing scheme is that there

will be a cost for sharing structures which could be expensive. In Emele's method this shows

as the cost for traversing the chronological dereference chain. As we have seen in the above

example, every time a destructive change is to be made to a node, a copy of the node is created

and put at the end of the chronological dereference chain. Figure 3-12 is a picture of dagS from

the above exarnple.

After only two successful unifications, with a graph containing only 3 non-root nodes and 3

arcs, we need to follow the derefence chain 4 times. Since every unification in a shared arc is a

destructive operation, this dereference chain is exteuded every time a unification is performed
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dag3
く0,1>

dag5
く0,1,2>

孟

:ln

in a shared arc. since some congtituent graphs are unified a great number of times in typical'
(

large scale natural language systems, the cost of this can be very high' A long chronological 
-

dereference chain may be needed to be followed in order to get the node that is needed' Note

that the chain must be followed every time the graph is needed fgr each and every node in

the entire graph. Since each constituent graph built during unificatioo .u.t grow extremely

large in large scale systems, and since unification between them escalates the complexity of

traversing the chronological dererence chain, the question of whether the introduction of this



data structure scheme is desirable is an open question dependent upon application areas. If

we could find an application where graphs contain only few shared arcs and where graphs are

rarely reused once unified, then Emele' scheme could be an ideal option. In such a case, as

we have discussed above, his scheme can be adopted to any existing unification algorithms,

including the one we are proposing in this thesis.
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Chapter 4

Quasi-Destructive GraPh

unincation

4.L Introduction

In designing an efficient graph unification algorithm, we have made the following observation

which influenced the basic design of the new algorithm described in this thesis:

Uniflcation doee not always succeed'

In a typicat natural language system with a relatively small grammar size' 60 to 80 percent

of unifications attempted during a successful parse result in failure' As the grammar siz(

increases, the number of unification failures for each successful parse increases. For example,

in our large-scale speech-to-speech translation system jointly under development by cMU and

ATR Interpreting Telephony Research Laboratories' we estimate more than 90% of unifications

to be failures during a successful parse. If a unification fails, any computation performed and

memory consumed during the uniffcation is wasted'



0管
一し
、

Another observation about the behaviour of graph unification which seems well accepted in

the existing literature is that:

Copying is an expensive operation

Copying a node places a heavy burden on the parsing system. Wroblewski[lg87| calls it a

"computational sink". Copying is expensive in two ways: 1) it takes time; 2) it takes space.

Copying takes time and space essentially because the area in the random access memory needs

to be dynnmically allocated, which is an expensive operation. We calculated the computation

time cost of copying to be more than 90 percent of the total parsing time in our large-scale

speech-to-speech translation system. This time/space copying burden presents problems in an

environment where computational resources are limited due to the size of the grammar and

other knowledge sources. (Also, the creation of unnecessary copies eventually triggers garbage

collections more often in a Lisp environment, which also degrades the overall performance

of the parsing system.) In general, parsing systems (such as large LR tables of Tomita-LR

parsers, expanding tables and charts of Earley, and active chart pa^rsers) are always short of

memory space. Our own phoneme-based generalized LR parser for speech input is always

running cin a swapping space because the LR table is too big, and the marginal addition or

subtraction of memory space consumed by other parts of the system often has critical effects

on the performance of these systems. An experiment conducted at ATR showed that in order

to attain a stable performance of a parser, a physical memory space required for the sentence

that requires the most memory needs to be guaranteed to the system. We have seen that the

amount of memory (conses) consumed by copying operations during a parse determines the

necessary physical memory.l With the aforementioned observations, we propose the following

r

lFor exa,rnple, 88 we will see from the data in Chapter 6, the memory needed for \froblewskits algorithm
was 5 to 6 timee greater thau the propoaed scheme. This mearg tbat not only were geutences faetet with our
acheme, but algo that some geNrteacea could not be paraed at all uaing Wroblewskitg algorithm on our machine
euvironment due to the phyaical limit of rnemory epeed.
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principles to be the desirable condition,for“ emcient graph u■ i,c■19■ alg9ritl理 :

o Copying should be performed only for successful unincations.

o Uniflcation fai11lres should be found as soon as pos,ible.

By way Of deflnitio■ ,we Would like to categoize ёxceO§ ive c6pying of gra.phs into Over

COpying猛dE田 1ゴ C6″ingo WrObleWskl198可 dso dёines Over C61,ing alld Early Copying。

our dもflniti61.of 6ver cOlyiig ig the same as wroblettskl's; however,our deinition of early

cOpying is sughtl,difFerё nt

I Over Copying: Two graphs are created in order to create one new graph. This typicall

happens when copies of two input graphs are created prior to a destructive unification

operation to build one new graPh.

r Early Copying: Copies are created prior to the failure of unification so that copies

created since the beginning of the unification up to the point of failure are wasted.

Wroblewski defines Early Copying as follows: "The argument dags are copied before unifi-

cation started. If the unification fails then some of the copying is wasted effort." Ee restricts

early copying to cases that only apply to copies that are created prior to a unification. Restrict-

ing early copying to represent copies that are created prior to a unification leaves a number o{

wasted copies that are created during the same unification up to the point of the detection of

failure. Therefore, these wasted copies will not be covered by either of the above two definitions

for excessive copying. We would like Early Copying to mean all copies that are wasted due to

a unification failure, whether these copieg are created before or during the unification.

難
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4.2 The Quasi-Destructive Graph Llniffcation Algorithrn

We would like to introduce an algorithm which addresses the criteria for fast unification dis-

cussed in the previous sections ([Tomabechi, 1991a]). It also handles cycles without over copying

(without any additional schemes such as those introduced by Kogure[1989]).

As a data structure, a node is represented with six fields: 'typet, 'arc-list', 'comp-arc-list',

'forwardt, tcopy'2, and generation.S The data-structure for an arc has two fields, 'label' and

tvalue'. tlabelt is an atomic symbol which labels the arc, and 'value' is a pointer to a node

structure.

■ODE
+――‐‐―――――――‐―――+

l      type     l
+――――――――――――‐――+

l    arc―■18t   :
+―――――――――――――――+

: comp― arc―■13t :
+―――"―――――

`―
―――_+

l    fOi,ard    l lRc
+----- -- - --- ----+

copy
+---------------+ +---------------+
I generatLon | | value I
+---------------+ +-------'-------+

Figure 4-1: Node and Arc Structures

The central notion of the Q-D algorithm is the dependency of the representational content

on the global timing clock (or the global counter for the current generation of unifications).

Any modification made to comp-arc-list, forward, or copy fields during one top-level unification

can be invalidated by one increment operation on the global timing counter. Contents of the

'Martin Emele of Univeraity of Stuttgart euggeated that a aeparate field for tcopy' may be aaved by uaing a
forwa,rd link only, aince copy link is ue€ded only wheu forward liuk is not used.

rNote that [Tomabechi, 1991a1 ured sepa^rate mark fielde for the comp-arc-list, forward, and copy; currently
however, only one generation ma.rlc ie uged for all tbree fleldg. Thankg are due to Eidehiko Matauo of Toyo
Informatiou Syatema for euggesting this.



comp-arc-list, forward and copy fields are respected only when the generation mark of the

particular node matches the current global counter value. Q-D graph unification has two kinds

of arc lists: 1) arc-list and 2) comp-arc-list. Arc-list contains the arcs that are permanent (i.e.,

ordinary graph arcs) and comp-'arc-list contains arcs that are valid only during one top-level

unification operation. The algorithm also uses two kinds of forwa.rding links, i.e-, permanent and

temporary. A permanent forwarding link is the usual forwarding link found in other algorithms

([pereira, 198b1, ffioblewski, 198d, etc). Temporary forwarding links are links that are valid

Only during one top‐ level uni,catiOn.The currency of the temporary links is determined by

matching the content of the generation fleld for the links with the global counter;if they lnatch,

C
the content of this fleld is respected4.

As in Pereir■1985!,the Q‐ D Jgorithm htt three types of nod“ 1):就Omic,2):Top5,and

3):complex.The ttomic type nodes represent atomic symbol vdleS(SuⅢ .3`Noun'),:TOp

type nodes are v=iables, and :complex type nodes are nodes that have arcs coming out of

themo Arcs are stored in the arc― list ield. The atomic valuc is also stored in the arc‐ list if

the node type is ttomic.:Top nodes succeed in uniけ ing with tty五 Ⅲ 6Ⅲd the result of

uniflcation takes the type and the value of the node with which the:Top node was unifled,

:atomic nodes succeed in unify:ng with:Top nodes or with:就 omic nodes with the same value
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dereferencingz function. Following that is the algorithm description for copying nodes and arcs

(called from unify0) while respecting the contents of comp-arc-lists.

terminal atomic valueg.
?Dereferencing ia the opetation of recuraively traveraing forwa,rding lioke to return the target node of the

forwarding (a^a preaented in discusaiong of Pereirats and Wrobleweki'o algorithma in Chapter 3).

^}lt



FUNCTION unifY'dg(dg1'dg2);
regult e catch *ith tag 'unify-fail

calling unitp(dg1'dg2) ;

iacrement *ooily-gbti'"ooot"t*; ;; etalta from 10 I

returu(reault);
END;

FUNCTION unifY0(dg1y'g2);
if '*T* = unifyl(dg1dg2); THEN

copy F copy-dg-with-comp'a'rca(dg1);
return(coPY);

END;

FUNCTION unifyl (dg1-underef,dg2-underef);

dcl * dereference-dg(dg1-underef);
alz * dereferenco'dg(dg2-underef );
lF (dgf.copY ie non-emPtY) THEN

dgl.copy r- ail; ;; cutofr uncurrent copy

IF (dg2.copY ir non-emPtY) THEN
dg2.copY - nil;

rF (dgl = dg2)DTHEN
return(t*T*);

ELSE IF (dgl.tYPe = :ToP) THEN
forwa.rd-dg(dg1,d 92 r:temPora'rY) ;

return(t*T*);
ELSE IF (dg2.tYPe = :ToP) THEN

forward- dg(dgZ,dgl r:temPorarY) ;

return(t*T*);
ELSE IF (dg1.tYPe = :atomic AND

dg2.tYPe = :atomic) THEN -^
If (dg1.arc-list = dg2.arc-li8t)10THEN

fotwa.rd-dg(dg2,dgl r:temPomrY) ;

return('*T*);
ELSE throwlrwith keyword'unify-fail;

ELSE IF (dgl.tYPe = :atomic OR
dg2.tYPe = :atomic) TIIEN
throw with keYword 'unifY'fail;

ELSE ahated <- intersectarca(dg1'dg2);
FOR EACI{ alc IN shared DO

unifYl(deathation of
the ahared a.rc for dg1,

deatination of
the gbared arc for dg2);

forwa.rd- dg(d 92,dg1 r:temporary) ;ru- -
nclw F comPlementa,rca(dg2,dg1);"
IFr{ (dg1.comp-a.rc-liet ia aon-empty) THEN

'f F lagf !"""ration = *unify-global-counter*) TIIEN
FOR. EACH arc IN new DO

puah arc to dgl.comP-arc'liat;

ELSE dgl.comP-a,rc-tis6 {- nil;
ELSE dg1. generatioo <- *unify- global-counter* I

dgl.comP-arc-liat +- newl

return ('*T*);
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END:

Gn.l,px Nons DunppERENcrNG

FUNCTION derderence-dg(dg);
forward-dest e dg.forwa.rd;
IF (forwa.rd-deet ia non-empty) THEN

IF (dg.generation = *unify-global-counter* OR,
dg.generation = 9) THEN
return(dereference-dg(forward-deat)) ;

ELSE dg.fonwa^rd r- uil;
return(dg);

ELSE return(dg);
END;

The functions Complementarcs(dg1,dg2) and Intersectarcs(dgl,dgz) return the set-difference

(the arcs with labels that exist in dg1 but not in dg2) and intersection (the arca with labels

that exist both in dgl and dg2). During the set-difference and set-intersection operations, the

content of comp-arc-lists are respected as parts of arc lists if the generation mark matches the

current value of the global timing counter. Forward(dgl, dg2, :forward-type) puts (the pointer

to) dg2 in the forward field of dg1. If the keyword in the function call is :temporary, the current

value of the *unify-global-counter* is written in the generation field of dgl. If the keyword is

:permanent, 9 is written in the generation field of dg1.15 The temporary forwarding links are

necessary to handle reentrancy and cycles. As soon as unification (at any level of recursion

through shared arcs) succeeds, a temporary forwarding link is made from dg2 to dgl (dg1 to

Eg indicateo a permanent forwardiag link.
eAs diecussed previoualy, thia represeata 'equal' in the 'eqt gense. Becauge of forwarding and cyclea, it is

possible that dgl and dg2 are'eq'.
loArc-liat containe atomic value if the node ie of type :atomic.rrCatch/thrm' conatructl i.e., immediately return to tnify-itg.
l2Thie wilt be executed only when all recursive calle into unifyl have succeeded. Otherwiae, a failure would

have caueed an i--ediate return to tnifg-dg.
rsComplementarcs(dg2,dg1) waa called before unifyl recureions in [Tomabechi, 1991a], Currently it ig relocated

to after all unifyl recurgioae euccersfully return. Thanka are due to Ma.rie Boyle of the University of Tuebingeo
for suggeating thia.

t'Thig chedt wag added after [Tomabechi, 1991a1 to avoid over-writing the comp-arc-liat whea it ig writteu
more than once within one unify0 call. Thanko are due to Peter Neuhaug of Uuiversitit Karlsruhe for reporting
this problem.

l6The q-D algorithm itseU does uot require 8ny permanent forwarding; however, the functionality ia added
becauae sotne gremma'r. reader modules tlat read the path equation apeciffcationa iato directed graph feature-
structurea use permatrent forwardiug to merge the additional gra,mmatical apeciffcatione into a graph structure.
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dg2 if dg1 is of type :Top). Thus, during unification, a node already unified by other recursive

calls to unifyl within the same unify0 call has a temporary forwarding link from dg2 to dg1 (or

dgl to dg2). As a result, if this node becomes an input argument node, dereferencing the node

causes dgl and dgZ to become the same node and unification immediately succeeds' Thus' a

subgraph below an alrea.dy unified node will not be checked more than once even if an argument

graph has a cycle.16

Qulst-DusrnucrlvE CoPYtxc

FUNC110N∞ p■ dg‐憫 th‐∞mp‐arCS(d「 underef):

IEN                               (

newcopy.type← :atomic;

1瑞.扉胤黒世嘲ま」。bal_counter≒
dgocopy‐ newcopy;

retum(newcOpy);
BLSE IF(dgot'pe=:TOp)THEN

ncwcopy← cre■ e‐■OdC();

:ま::雷城認ま:11牌 *u」摯g10bin“ 0■

dgocopy← neWCOpyl

ret―  (newcopy);

ELSE
五議呵ッ← create―nodし ();

LTCOunte薦
new=c‐ COp■肛彎an4‐90mp~譴ClarC):                       (

IEN
出DO
IP‐ atrc);

P,3h neWarc■ tO newcopy.aT,u“ :

agocomp収llist,Ⅲ :

retun (newcOpy):

END:

庶 電 器 譜鶏 懺 鮮 よl譜露零I驚富諄'盤寵』器 1軍出l響
em“宙u耐
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FUN CTION copy-arc-8nd-conpuc(input-arc);
Iabel * iaput-arc.label;
value +- copy-dg-with-comp-a,rco(input-arc.value);
return a new arc with label and value;

END;

Let us walk through a simple uniffcation example first. What follows in the following two

pages is simple unification of two graphs dgl and dg2 which represent feature structures:

dg1

[[a s]
tb Hll

dg2
[[a I01 n]
[b r01]
[c t]l

First, topJevel unify-dg calls unifyO which in turn calls unifyl. Unify0 will perform quasi-

destructive copying operation after the top level call to unifyl successfully returns. Now top-

level unifyl finds that each of the input graphs has arcs with labels a and b (shareil). For

now we represent arcs with label a as arc-a. Then unifyl is recursively called (unifyl(2,5)).

At step two, the recursion into arc-a locally succeeds, and a temporary forwarding link with

time-stamp(n) is made from node 5 to node 2. At the third step (recursion into arc-b), by the

previous forwarding to node 2, node.5 aheady has the value .9 (by dereferencing). Theh this

unification returns a success and a temporary forwarding link with time-stamp(n) is created

from node 3 to node 2. At the fourth step, since all recursive unifications (unifyls) into shared

20I.e., the 'generationt field of the node etored in the 'copyt ffeld of the tdgt node. The algorithm descdbed
in [Tomabechi, 1991a1 uaed 'copy-malk' ffeld of 'dg'. Currentty 'generation' ffeld replaces the three ma.rk field
deecribed in the article.

2rf,e., the exiating copy of the node.
22Createg an empty node structure.
zlThis operation to aet a newly created copy node into the'copyt field of tdg'waa done after recursion into

eubgrapha in the algorithm deecription in [Tomabechi, 1991a] which was a cause of infinite recurgion with a
particula.r type of cyclee in the graph. By moving up to thia poaition from afLer the recurgion, euch a problem
can be efectively avoided. Thant<s are due to Peter Neuhauo for reporting the problem.
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arcs succeeded, top-level unifyl creates a temporary forwarding tink with time-stamp(n) from

dg2's root node 4 to dgl's root node 1, and sets axc-c (neu\ into comp-arc-list of dgl and

returns success ('1T*). At the fifth step, a copy of dgl is created respecting the content of

comp-arc-list and dereferencing the valid forward linls. This copy is returned as a result of

unification. At the last step (step six), the global timing counter is incremented (n :+ n+1).

After this operation, temporary forwarding links and comp-arc-lists with uncurrent time-stamp

(l n+f) will be ignored. Therefore, the original dgl and dg2 are recovered in constant time

without a costly reversing operation. (Also, note that recursions into shared-arcs can be done

in any order, producing the same result).



As we just saw, the algorithm itself is simple. The essential difference between our unifyl

and the previous ones such as Pereira's is that our unifyl is non-destructive. That is go because

the complementarcs(dg2,dg1) are set to the comp-arc-list of dgl and not into the arc-list of

dgl. Thus, a,s soon as we increment the global counter, the changes made to dg1 (i.e., addition

of complement arcs into comp-arc-list) vanish. As long as the generation value matches that

of the global counter, the content of the comp-arc-list ca,n be considered a pa"rt of arc-list and

therefore, dgl is the result of unification. Eence the name quasi-destructive graph unification.

In order to create a, copy for subsequent use, we only need to make a copy of dgl before we

inCrement tht global cOunter,while respeCting the cOntent Of the COmp―

::―:i1111:iski)forGThis wayl injtead of calling other unincation functions(suCh as unif

incrementally creating a, copy node during a unification, we need only to create a copy after

unification. Thus, if unification fails, no copies are made at all (as in Karttunen's scheme).

Because unification that recurses into shared arcs carries no burden of incremental copying

(i.e., it simply checks whether nodes are compatible), as the depth of unification increases

(i.e.,-as the graph gets larger) the speed-up of our method should become conspicuous if a

unification eventually fails. Since a parse that does not fail on a single unification is unrealistic,

the gain from our scheme should depend on the number of unification failures that occur during

a unification. Ag the grammar size increases, the number of failures per parse tend to increase..

and the graphs that failed get larger, and the speed-up from our algorithm should become more

apparent. Therefore, the characteristics of our algorithm seem desirable.

What follows is a sequence of examples showing the way that temporary forwarding and

comp-arc-list work to perform efficient unification. The quasi-destructive copying after uni-

fication qopies the dgls by simply following temporary forwarding pointers. Unlike Emele's

method, the temporary forwarding does not glow since there is no chronological derefencing.

0

⌒ (
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After a successful uniftcation, one increment in the global counter invalidates all changes made

to the graph.

First we will start with another simple example as shown in Figure 4-2 and' Figure 4-3. Note

that unify-dg(dg1,dg2) and unify.dg(dg2,dg1) get the same results. The result should be as in

Figure 4-4. We can see that only a minimum number of copies are created.

Figure 4-2:A■otler Simple example

Figure 4-3: At the end of time n

Now, for a bit more complicated example (Figure 4-5, Figure 4-6), but one that works in a

similar manner.

cttnp― arc― list

forurard(n)

forruard(n)

foruard(n)
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⌒ (

dg5(result)

Figure 4-4: and the result

H

Figure 4-5: A little more difficult .g)cnYnFle

And the result in Figure 4-7 
(

Now comes a difficult example. Not only might its workings be difficult to follow, it was

impossible for most past uniffcation algorithms. But if you follow the simple rule of traversing

the a.rcs, and if you find [], just forward it to the counterpart. Add the complement arcs

into comp-arc-list, and it turns out that the unification is rather straightforward in the QD

framework. We will use four figures (Figures 4-8, 4-9, &10, and a-11) to depict this one. The

first step is to forward the dezl< o ) which is [] to dSU < o > (Fig a-9).

Y

Z
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forruard(n)

cmp_arc_:ist〔
n〕

foruard(n)
iLFLLrdin〕

Figure 4-6: At the end of time n

Figure 4‐7:and the result

Then we unify dg1/<b,d>and dg2/<b,α >。 Since both are n,dg1/く ら,d>gets

forwarded to dg2/<b,d>(See the algorithm)。 Now we trNergeintO由 に‐c and unitt dg1/く C>(

and dg2/<c>.We ind that dg1/く c>iS already forwttded to dg2/<b,d>SO actually we

田ぬinifying the dg2/く b,d>With dg2/く c>。 Since dg2/く ら,d>then is n,it succeeds ttd

dg2ノ kb,a>is forwttdtd to dg2/く c>.Thij is the end Of the rここursions into the shared arcs.

Nowi“ cefiS tht cOmplementarc(dg2,dgl)therefOre,itis put into the comp‐ are― list Of dgl.ThL

is thё
:も
五d ofthe rё こurs市e ca1ls to unifyl(Figuie 4‐ 10)。

Now unifyl ietuins and uni諄 O mJヒes=copy of dgl respecting the currё nt forwarding and

dg5(result)



dgl

■
Ｊ

ｒ
ユ

(,

TI
Figure 4-8: A difficult example containing a cycle

Figure 4-9: First steP

comp-arc-list (Figure 4-11).

One final note is that when Q-D copying recurses into the arc-e of dg2 by following the

temporary forwarding links while making a copy of dg1, the top node of dg2 will not be copied

twice. This is so because when the top-level unifyl returns, the tempora^ry forwarding from

the top node of dg2 to dg1 is made, therefore, when the cyclic arc-e tries to make a copy of

the top node of dg2, it finds that the top node is already forwarded to the top node of dgl.

Since the top node of dgl was already copied at the beginning of the Q-D copying of dg1, the

already-made copy is simply returned (see the first IF in the Q-D Copying algorithm).

dgl

orШ arl〔 n〕
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dgl

a

ご

Ｐ

・

ミ
ー
ー
∴
彙
離
籍
ｅ

Figure 4'10: At the end of time n

Finally, we would like to provide the example of another cyclic graph unification (Figure 4-

12), one which we already saw in Chapter 2 (Figure 2-2). It is the unification of the cyclic

graphs which Pollard and sag once regarded as not unifiable. we already claimed that from

our definition of the subsumption relation, the unification of these graphs should be perfectly

reasonable.

we promised in chapter 1 and 2 that we would provide an algorithm that supports our

Figure 4-11: and the result

forlllarご I百,

dg3〔resu:t〕
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dg2

〔a
X01

X02

〔a

Figure 4-12:Unincation OF another cyclic Featl・ ,e structure(Figure 2‐ 2)

deinitiOn ofthe subsumptiOn and extention reiations regardless Of the e●
stence of cycles,Here,

We can see easily that the Q_D algorithm fulllls the prOmise.Actually・
you wnl probセ島ly see

that uninc■ion of these sturctures is rather tri宙
al if you f0110w the steps of Q‐D unincation

by hand.First we dO unifyl(dg1/<α
>,dg2/<α >).Since dg2/<α >is l we forward from

it tO dg1/く α>as in Figure 4-13。 Next we dO unifyl(dg1/く ら>,dg2/<b>)and this time

dg1/<b>is口 and we fOrward it tO dg2/<b>such that the result is as in Figure 4‐
14.

Figure 4-13: Putting temporary forwarding linlcs

ｄ ｇ．

ｌ

ｇ ２

１

ｄ
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Finally, we esimply make a copy of dgl as usual.2l When we Q-D copy dg1/( a, o ) since

it is forwarded to dgzl< b > we copy the arc below which points ro dgzl<b,a )' since it

is forwarded to dgl/< o >, we can copy that node. Now we find that this node was already

copied when we traverse down the arc-a on dgl, so we simply return the copy that is already

stored in the ,copy, field of dsl/< a ). This way, we can see that unification of these feature

structures is possible and actually trivial using the Q-D scheme.

x01
x01

xoz

ａ

　

　

ａ

亡

亡

ｇ３
ｒ
ｐ
‐
‐ｈ
て

tI
x02 Figure 4-14: and the result

4,3 Discussion

Incremental copying has been accepted as an effective method of minimizing over copying and(

eliminating early copying, a3 defined by wroblewski. However, while being effective in mini-

mizing over copying (it over copies only in some special cases of convergent arcs)' incremental

copying is inefiective in eliminating early copying as we defin e it'22

iththeaametaggiogX01inthedistinctfeaturestructuregdonot
indicate the ga.me value. the tagginga x-t are oimply put in orde'r of appearalce ftom the root nodea within

one graph. Therefore, the node Xoi of dg1 ooil ooi" >ior "r 
dg3 a,re distinct nodea' Actually' as a matter of

"o"ripood*ce 
iq this ffgute, X02 of dg3 correaponde to X01 of dgl'--iiiB*1t 

copyingr will f,enceforth be ueed to refer to early copying ar defined by us'
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Incremental copying is ineffective in eliminating early copying for two reasons. First, when

incremental copying unification is performed, any copies created up to the point of failure in

the same subgraph of a shared arc will be wasted, as seen in Figure 4.15.

bopy、喘」11:“曖Jl;'pl
上
ｆ

Ｚ

ＩC

L cl toptaopdIJ
oopy

if inconsistency is f ound here
all this is wasted

Figure 4-15: Early copy of incremental scheme within the same subgraph

Second and more significantly that since the recursive calls into the shared arcs axe non-

deterministic (independent of each other), there is no way for one particular recursion into a

shared arc to know the result of future recursions into other shared arcs. Therefore, even if a

particular recursion into one arc succeeds (with minimum over copying and no early copying

in Wroblewskits sense), other arcs may eventually fail; thus the copies that are created in the

successful arcs are all wasted. Figure 4-16 shows such an example. If incremental unification

proceeds unifying the subgraphs E,X,Y, and then Z. At some deeir position of Z, if unification

failure is found, not only are nodes in Z wasted (as we saw in Figure 4-15) but all of the copying

卜

、
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created in E,X,Y will also be wasted. By structure-sharing of unmodified graphs, Kogure's and

Emele's schemes can avoid wasting the subgraph E (i.e., a complement graph), but their scheme

cannot avoid wasting X and Y (Figure 4-16). Note that this is inherent and unavoidable in

incremental schemes, since by definition, these schemes must produce copies as they proceed'

Since each recursive calls to sha^red arcs are non-deterministic, future event in other recursive

calls are not predictable. In order to avoid this problem, incremental schemes will have to delay

all copying until after entire top-level unification. This will mean that these unifications will

no longer be incremental. Thus, fully delaying copying in incremental schemes to avoid early

copying would make their control structures essentially no diferent from Q-D and reversible

(Karttunen) schemes. In other words, we can also view the Q-D scheme as a fully lazy scheme

without overhead for delaYing.

The difFerence between the Q― D scheme and the incrementalscheme becomes apparent when

the used grammar is sumciently large,"五t」ning large subgraphs which may be over‐ copied by

the incrementalsCheme.As We willsee in the data in Chapter 6,by avoiding the Early Copying,

the proposed Jttorithm rins at島 olf twice the speed of WroblewskPs卜 98η 」goЁthmo The

control structure of Our algorithm is ideitical to that of Pereira119851.HoweVer,in Pereira's

method,a result graph is represented as a Co口 binttiO■ ol the Orijnd graph(`skeleton')and

the updates tnew arCS tO be a・dded to creale the result StOred il`envilonme,t'): ThuS the result(

graph is dynamically cFeated when,Ver it iS needed. lrhiS Causes tho 10g(d)OVerhe■ d(where d

is the nlmbe1 9f n9d9'in■ gFaph)t‐9:ドsemble t,9W1919 graP卜
'V9rytil■

e the nOde is acceSSed.

In the plopoSed schette,instead Of Stolling changes to the argutte■ t grapls in the environment,

we store tho Changes in the gral)h Stlucturo them,elves (lon「

`e,tFuctively); thercfore, there
i、F■l be no overhead associated with nodO rceSSeS. We share the principle Of storing changes

in a restorable way with Ka^rttunen's[1986] reversible unification and copy graphs only after a

６

ヽ
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Suppose X, Y were successful but unification failure was f ound
somewhere in Z; then X, Y and Z until detection of failure are
wasted. Kogure and Emele avoid copying of E but X, Y, Z will be
copied and these copies are all wasted.

Figure 4-16: Unavoidable massive early copying of incremental schemes

successful unification. In the Karttunen's method, whenever a destructive change is about to

be made, the attribute value pairs23 stored in the body of the node are saved into an array.

These values are restored after the top level unification is completed. (A copy is made prior to

the restoration operation if the unification was & successful one.) Thus, in Karttunen's method,

each node in the entire argument graph that has been destructively modified must be restored

separately by retrieving the attribute values saved in an array and by resetting the values into

the dag structure skeletons. In the Q-D method, one increment to the global counter can

invalidate all the changes made to the nodes.

2ll.e., arc etructures: tlabelt and ,valuet paira in our vocabulary.
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Chapter b

Quasi-Destructive GraPh

unincation with Structure‐ Sharing

5.1 Introduction

Inthepreviouschapter,wepresentedthefollowingobservationaboutgraphunification:

Uniff.cation does not always succeed' and

Copying is an expensive operation'

Weproposedthefollowingtwoprinciplesforfastgraphunificationbasedupontheabove

observations:

e Copying should be performed only for successful uniftcations'

o lJniflcation failuree should be found as soon as poesible'

Thus, we eliminated over copying and Early copying (as defined in the previous chapter)'

In this chapter, we propose another design principle for graph unification based upon yet

another observation :
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Unmodiffed subgraphs can be shared.

At least two schemes (namely [Kogure, 1990] and [Emele, 1991]) have been proposed recently

based upon this obeervationl however, both schemes are based upon the incremental copying

scheme. As described in previous chapter, incremental copying schemes inherently suffer from

Eorly Copying, as defined in this thesis. This is because, when a unification fails, the copies that

were created up to the point of failure are wasted if copies are created incrementally. By way of

definition we would like to categorize the sharing of structures in graphs into Feature-Structure

Sharing (FS-Sharing) and Data-structure Sharing (DS-Sharing). Below are our definitions:

Feature-Structure Sharing: Two or more distinct paths within a graph share the same

subgraph by converging on the same node - equivalent to the notion of structure shari,ng

or reentroncy in linguistic theories (such as in [Poilard and Sag, lggd).

Data-Structure Sharing: Two or more distinct graphs share the same subgraph by

converging on the same node - the notion of slructure-shoring at the data structure level.

[Kogure, 1990] cails copying of such structures Reilunilant Copying.

Virtually all graph-unification algorithms support FS-sharing and some support DS-Sharing

with va"rying levels of overhead. In this chapter, we propose a scheme of graph unification

based upon a quasi-destructive graph unification method that attains DS-Sharing with virtually

no overhead for structure-sharing. Henceforth, in this thesis, structure-sharing refers to DS-

sharing unless otherwise noted. We will see that the introduction of structure-sharing to quasi-

destructive uniffcation attains another two-fold increase in run-time speed. The graphs handled

in the scheme can be any directed graph and cyclicity is handled without any algorithmic

additions.

Our design principles for achieving structure-sharing in the quasi-destructive scheme are:
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●ハLtomic and TOp■ odes can be sharedl: Atornic nodes cm be shared safely since

they never change thelr vdues. T,p nOdes can be shared'Since TOP nodes are always

forwttded to some other nodes whOn they uni与

o Complex nodes can be shared unless they are modined:complex nodes can be

considered inodifled if they are a target of the fbrwarding operation or if they received the

Current dditiOn of complement=cs(iitO Comp‐ arolist in a quasi‐ destruCtiVe scheme).

By designing an algorithm based upon these principles for structure‐
sharing while retaining

the quasi― destructiVe nature of Our algorithm,our scheme eliminates]Redundant Copying while

elimhating bothコarly Copying and Over Copying.

Figure 5‐ l shows how structure sharing in the propoSed scheme will be attained. All the

subgraphs which are not mOdifled are shtted by the result graph. In thご
subgraph where

modiflcation occurred,only the path above the rnodined node is copled and the nodes in the

ptth below the modined node are simply shared with the original graphs.h the neXt SectiOn,

■e win see how this can be done in the Q―D scheme.

ruttive cliaph」五iflcation with Strutture¨ shnring5,2 Quasi‐Dёst

In order to attain structure-sharing during Quasi-Destructive graph unification, no modification '(.

is nefes,ary fOF th0 1li'こ Ⅲ 叫
functio■ s de,cripedinthepFevious,9,ti9n.T11,S,CtiOn lescribes

the qutti‐ dest,■ 9twe cOpy,■5wlth Struct■ 19‐Sharing(QDSS)whiClrepl●
Ce,tle on母 ■■ COpying

ヴg91ithm.sil,,v■ 1lCati。 1・ヽ 9ti°1,Tc■■■Odil,4,the 9,p lnl19乱 i。l WithO■
t Structure―

shtting can bc平Ⅲed ti■ally with the Q‐ p unincttion with stFucture,Shalng if Such aコ 破ture

ffidegarenodeathatrepreaentatomicvalues.Topuodeaarenodeethatrepreseot
va.riables.

2Ar long as the urification operation ie the only operation to modify grapha.

C
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these nodes
are newly

and arcs
created

modif:ed

Figure 5-1: Ifow Redundant Copying is Eliminated

is desired (by simply choosing different copying functions). InformallS the Q-D copying with

structure-sharing is performed in the following way. Atomic and Top nodes are shared. A

complex node is shared if no nodes below that node are changed (a node is considered changed

by being a target of forwarding or having a valid comp-arc-list). If a node is changed then

that information is passed up the graph path using a multiple-value binding facility when a

copy of the node is recursively returned. Two values are returned, the first value being the

copy (or original) node and the second value being the flag indicating whether any of the nodes

below that node (including that nodes) have been changed. Atomic and Top nodes are always

sharedl however, they are considered changed if they were targets of forwarding, such that the

'changed' information is passed up. If the complex node is a target of forwa"rding, and if no node

below that node is changed, then the original complex node is sharedl however, the 'changed'

these nodes
are shared

■
■

Ｏ
υ



information is passed up when the recursion returns. Below is the actual algorithm description

for Q'D copying with structure-sharing.

Q-D Convruc wrrn Srnuctune-Snlullc

tr. UN CTION copy-dg-with-comp'arca-ahare(dg-underef) ;

dg r- dereference.dg(dg-underef);
IF (dg.copy ia non'emPtY AND

d!.copy.generation = 
*unifpglobal-counter'f) THEN

valuea(dg.copy, :cbanged) ;!
ELSE IF (dg = dg-uuderef) THEN

copy-nodecomp:not-forwarded (d g) i
ELSE copy-nodecomp-forwa.rded(dg) ;

END;

FUN CTION coay-node-comp-not-forwa.tded(dg);
IF (dg.type = :atonic) THEN values(dg'nil);

;; refiurn original dg with 'no changet fl"g.
bf,Sp IF (dg.type = :Top) THEN valuee(dg,uil);

ELSE
IF (dg.comp-asc-liat ia noa-empty AND

dg.generation - *unify-global-countet*) THEN
newcoPy r- create-node0;
newcopY.tYPe r- :comPlexl
Dewcrpy.geueratiou <- *unify-global-counter*;

dg.*py F lewcoPY;
f'OR ALL arc IN dg.a,rc-list DO

Dewarc
' F first value of copy-a,rc'aod'comp-arc-aha're(arc);

puah newarc ioto newcopy.a,rc-liat;

FOR. ALL oomp-arc IN dg.comp-a'rc-list DO
trewaac

F ff rat value of copy- arc-and-comp-arc-ehare(comp-a'rc) ;

pueh newarc ioto newcopy.arc-liat;
dg.comP-a,rc-listr r- nil;
valuer(newcoPn:changed) ;

ELSE
etate F nil, arce r- nill
dg."oPy F dg', dg.generation<- *unify'global'counter*1

FOIL ALL arc IN dg.arc-liat DO
newa'rc,changed J copy-arc-a'nd-comP-a'rc-ahare(arc); 

5

push newa.rc into arcsl
IF (changed hae value) THEN

gtate .- changed;
IF (etate has value) THEN

newoopy r- createnode0;
newcopY.tYPe r- :comPlexl

, n$lcgPy.ganeration r- *unify-global:counter*1

ttewooPy.arc-liot r- arcal

dg."oPy {- newcoPy;
' valuea(newcoPY,:changed);

ELSE dg.*PY <- ni\ ;;reaet coPY ffeld

valuea(dg,nil);
END;
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FUN CTION copy-node-comp-forwa,rded(dg);
IF (dg.type = :atomic) THEN valuea(dg,:changed);
11 return original dg with 'changedt flag.
ELSE IF (dg.type = :Top) THEN valuea(dg,:changed);
ELSE

fF (dg.comp-arc-list ia non-empty AND
dg.generation = *udfy-global-counter*) THEN
newcopy F cteate-node0;
newcopy.type + :complexl
newcopy.generation +- *unify-global-counter*1

dg.copy.- newoopy;
FOR ALL arc IN dg.arc-liat DO

IlgwaSc
r- ff rgt value of copy-a,rc-an d-comp-arc-ehare(arc) ;

puah newa.rc into newcopy.a,rc-liet;
FOR ALL oomp-arc IN dg.comp-arc-liat DO

Dewa.tc
+- ffret value of

copy-arc-atrd-comp- arc-ahare(comp-arc) ;
puah newarc into newcopy.arc-liatl

dg.comp-arc-liat +- nil;
valuea (newcopy, :changed ) ;

ELSE
state {- nil, a.rca +- fi1;
dg.copy * dg, dg.generation t- *unify-global-counter*1
FOR, ALL arc fN dg.arcJiat DO

newarcrchanged +- capy-61c-and-comp-arc-ahare(arc);
puah newarc into a,rcal

IF (changed has value) THEN
Etate r- changed;

IF (atate has value) THEN
DewcoPY * create-uodeO;
newcopy.type {- :comPIeK;
newcoPy.generation * *unify-global-counter*1

nercopy.arc-liat +- a36s1

dg.coPY r- newcopli
valuee (newcopy, :changed) ;

ELSE dg.co'py r- ait;
values(dg,changed); ;1 conaidered changed

END;

F UNCTIO N copy-arc-and-comp-arc-Ehare(input-arc);
destination,changed

F- copy-dg-with-compa.rcs-ohare(input-arc.value) 
;IF (changed haa value) THEN

label e input-a.rc.label;
value +- deotination;

__ Srlues(a rrew arc with label and value,:changed);
ELSE valuea(input-a,rc,nil); 

11 return original arc



END;

Let us review a few examples. Figure 5-2 represents a unification between two graphs, each

containing large subgraphs (shown as triangles).

Figure 5-2: A simple input s)csyniile with large subgraphs

The e-D algorithm without structure sharing described in the previous chapter would copy

these subgraphs. Eowever, with the introduction of the structure-sharing scheme, only one

node (i.e, the top node of the result graph dg3) and only two arcs (arc-a and arc-b) are copied

(Figure E-3). The subgraphs dgl/< b > and dgzl<a ) are not copied at all since there was

no modification in these subgraphs. Therefore, the original top nodes of the subgraphs are

directly pointed to by the newly created arcs arc-a and arc-b for dg3. ,The arcs arc-a and arc-b

are copied since the top nodes of the subgraphs were tg.rgets of forwarding; therefore, :changed

information is passed up. In our algorithm, if a complex node is a target of forwarding although

no copies are made of that node; it is considered modified and the arcs and nodes above that

node are copied. Therefore, there will be one copy node, the top node of dg3, and two new arcs

pointing to the original nodes created in this unification.

We would like to provide one more example of Q-D structure-sharing (QDS). This one is

nction.Inouralgorithm,twovalueearereturued.Thefirstvalue
ie the reeult of copying, and the second value is a flag indicating if there w88 any modification to the noile or to

any ofits deacendanta.
iTempora,rily aet copy of the dg to be itself.
ottoltiplo.,joe-bioa ca[. Thehrat value ie bouud to tnewalct, alld the eecond value ie bound to tchanged'.

■
１
■

ｒ
Ｅ
Ｌ

Ｑ́
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dgl dg2

Figure 5-3: The result of e-D with structure-sharing (eDs)

bit more complicated (Figure E-4).

First, Q-D unification is performed on the input graphs, as we already learned in the previous

chapter putting temporary forwarding links and a comp-arc-list (Figure s-b).

Now, after Q-D unification we do the QDS Copying (Figure 5-6). The top node dg3 will be

created since changes below will return the :changed flag upwards when recursive unification

returns. The arc-e is not copied at all since there was no change and therefore, the entire arc-e

is simply put in arc-list of dg3. dgL./<a ) is not copied but the arc a of dgl is copied since it

is the target of forwarding. By the same token dsz/< b > is not copied but the arc-b of dg2 is

copied. This wa$ only one node (i.e., the root of dg3) and two arcs (a and b) are created to

produce the result graph as seen in the figure.

The following two figures (Figures 5-7, 5-8) show the similar structure-sha^ring. First tempo-

rary forwarding is performed after successful unifications (Figure 5-7). Then this time because

dg3 (result)

95



‐        Figure 5_4:」 Ln6thё r example

dg1/<α,b>WaS a target of fOrwarding,although dg1/く
αi b>iS iOt Copied the aに s and

nodes leading tё  that■ode is c6pied.Thus,there ttill be 2 nё
w nodes and 3 ne■ arcs with this

example(FiLurё  5■ 8)。

5.3 Discussion

The structure-sharing scheme introduced in this section made the Q-D algorithm run signin- ft

cantly faster. provided in chapter 6, the structure-sharing version of the e-D algorithm (called

QDS or QDSS) runs at more than twice the speed of the non-structure sharing version (aD)'

It runs at about 4 times the speed of wroblewski's algorithm' The source of the gain is ap-

parent in that the number of created copies (nodes) and arcs is significantly reduced in the

QDS scheme. we will see in chapter 6 that whereas the QD scheme created about 75 per-

cent of 
'copier 

created by wroblewski's algorithm; the QDS scheme only created 19 percent

燻
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cmp-arc-list(n)

f orward(n)

forward(n)
①
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Figure 5-5: at the end of time n

of Wroblewski's algorithm. The original gain of the Q-D algorithm was due to the fact that

it does not create any Over Copies or Early Copies, whereas the incremental copying scheme

inherently produces Early Copies when a unification fails. The proposed scheme makes the

Q-D algorithm completely avoid Redundant Copies as well by copying only the lowest nodes

that need to be copied due to destructive changes caused by only the successful unifications.

Since there will be no overhead associated with structure-sharing (except for passing up two

values, i.e., ':changed/nit' and 'the result node', instead of one (result node) when recursion for

copying returns), the introduction of structure-sharing to the Q-D scheme is an ideal addition

to the algorithm.

Pereira ([Pereira, 1985]) attained structure-sharing by having the result graph share infor-

mation with the original graphs by storing changes to the tenvironment'. As discussed in the

previous section, there will be the log(d) overhead (where d is the number of nodes in a graph)



cmp-arc-list(n)

dgl dg2

f orward(n)

f orward(n)

dg3(result)

‐  Figure 5-6:and the resulti

agsbciJし ed■viti Perelra'3 mё th6d thtt is required ating nddb accё Os in order to a3semble the

青h016意 ralh ib轟 the tOktleto五 'aha‐ th`五laateξ  in the tと五ヤir6五五entl:.In thё  pr●poSed scheme,
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Figure 5-7: One more example

in Chapter 4, although Emele and Kogure introduced structure-sharing, because their central

control structure is inherently incremental, early copying is inevitable if failure is detected as

we saw in Figures 4-lb and 4-16.

There is one potential problem with the structure-sharing idea which is shared by each

of the schemes, including the method proposed here. This happens when operations other

than unification modify the graphs. (This is typical when a parser cuts off part of a graph for

subsequent analysis6.) When such operations are performed, structure-sharing of Top (variable)

nodes may cause problems when a subgraph containing a Top is shared by two different graphs

and when these graphs are uged as arguments of a unification function (either as part of the

same input graph or as elements of dgl and dg2). When a graph that shares a Top node is

not used in its entiretS then the represented constraint postulated by the path leading to the

Top node is no longer the same. Therefore, when such a graph appears in the same unification

along with some other graph with which it DS-Shares the same Top node, there will be a false

bgaphofthepathX0forappIyingfurthe'rruIeebhenaruleie
acoePred.



dg1

rorWffi

dg2

△

dg3

2 new nodes {0,1} and

Figure 5-8:

3 new arcs {a,b,c}

The result

FS-Sharing. (If the graph is used in its entirety this is not a problem since the two graph

paths would unify anyway.) This problem happens only when neither of the two graphs that

DS-Shares the same Top node was unified against some other graph before appearing in the

same unification.T (If either was once unified, forwarding would have avoided this problem)'

consider the figures below. Unifying the shared graphs dg1 and dg2 are fine with these two

examples in Figure 5-9.

Also, the following correctly fails (Figure 5-10)'

But the unification in Figure 5-11 incorrectly fails'

The question here is whether the cases such as Figure 5-11 is possible during parsing at

all. The answer seems that a^s long as the unification operation is the only operation on graphs

le(euchasV+V)augmenteilwithaheavyugeofconvergeocein

th" i;;;"d", i, 
"ppuui 

manv timer during I Parse'
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Figure 5-9: Unifying shared graphs - correct results

dgl

η
[ ]

Figure 5-10: Unifying shared graphs - still correct result

then the case like Figure 5-11 is not possible. It is because unification only adds information

and never subtracts information. Because of the monotonic increase nature of informational

content in uniffcation, if two graphs share a subgraph (or a node), then the two graphs must

have at least one path (arc) that they share the labels. This is so because structure-sharing is

performed during QDS Copying between the original graph and the result graph and therefore,

if two distinct graphs share a same node then the shared node (subgraph) comes from the same

original graph. Therefore, the path leading to the node must be identical in two graphs.

However, if a parser modifies the input graphs destructively by deleting a,rcs from the graphs

X

ヽ ⑬

dg2
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dgl

η
[]

Figure 5-11:incOrreCt tO fan

then the ctte like Figure 5-1l may iappeno More ngures to fOlltt mustrttes thS prOЫ

em:

dgl

fs-sharing
FAIL

Fiしure 5‐ 12:COrreCt reSult by StruCture‐
Sharing

Figure 5‐ 12 mustrttes the cOrresponding input‐
graph3 0f Figure 10 Without structure―

sharingo lt is easy tO See that the reSult is COrreCt With StruCture―

Sharing. kit

HoWeVer,if we delete arc‐
C from dg2 in Figure 5‐

12(5‐ 10)aSShOWniniigure 5-13,incOrrect    E
=.     ■  _     =

resultwillbeproduced.Thisway,cuttingoffapartofagraphisadangerousoperationwhen

structure-sharingofvariablesisintroduced.ManyparserscutoffsubgraphofX0pathsand

passupthesubgraphtobecomesubgraphofXninotherrulegraphs.X0(mother)subgraph

ofthecurrentunificationareusedasXn(daughtedsubgraphoffutureunifications.Wenow

see that such a scheme can cause a problem. The better method for passing up the mother

X

ｇｎ●ｎｓｈａ
∫
∫
ミ
ー

一Ｓｄ

dg2

do2

dgl
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But, if we delete the arc-c from dgZ:

X
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IL srJccEss
(which is correct)

result after deleting an arc

～

dg1 dg?'dgl

Ｌ
て
、
、

ＦＡ

(incorrect to FAIL)
Figure 5-13: Incorrect

] 9

information using a unification-based grammar is simply to represent the root (mother) by ()

instead of < X0 ) as was used in PATR-II like formalisms. The grammar we used for our

experiments was written that way and the parser does not cut of the subgraph of ( X0 >;

instead it passes the whole root node upward through the X-bar levels. Even if this problem

is solved there is another similar problem. It is due to the fact that reentrant variables extend

non-reentrant variables. Therefore, if a reentrant path containing a variable is unified with a

non-reentrant path with the same features, than the resulting reentrant graph (if the reentrant

one was dgl) would share the variable with the non-reentrant one. If this happens and if the

original non-reentrant graph and result reeentrant graph was within the same parse, then again

incorrect FS-Sharing may result. Since, after a whole sentential parse, the constituent built

during the parse is no longer used, this problem would arise only during one parse.

As describe above, care should be taken in treating structure-sharing of va^riables. The

methods to avoid such a problem include the following: 1) As long as convergence of Top nodes

is used for features that are not passed up during parsing, the problems do not affect the result

of parse in any way - which is the case with the grammar in our experiment; and 2) Whenever
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the same rule graph is used twice within & parse' make a copy of the rule graph when it is

used for the second time - which is the method taken in ATR's Asun'e' system ([Takahashi' et

at, 1gg2]). Although, structure-sharing of variables needs extra care, the efrciency gain from

sharing va.riables should more than offset the efforts that need to be taken in order to guarantee

the correct behaviour. The chart in Appendix VI is taken from [Takahashi, et oI, L9921' rt

is data taken from the above mentioned AsuR,c' experiments by Takahashi' et ol using ATR's

latest large-scale grammar a.dopting the Q-D algorithms' ' The data shows that if structure

sharing of va^riables were not performed, there would be only a 40 percent reduction in the

number of nodes copied, compared to the non-structure-sharing Q-D algorithm' Eowever' if

bottomnodesareshared,thereisanSSpercentreductionfromthenon-structure-sharingQ-D

scheme. since its current implementation copies a rule graph the second time it is using within

one parse, if we can avoid the second copying of rules as well, there could be an even greater

reduction in the amount of copying performed'



■
■
■
●
一■
●

，
一一■

一̈■
一一
一■
．■
●
一

ヘ

Chapter 6

Empirical Results

6.1 Comparison using actual grammar

This section describes the empirical results obtained from our sample implemtations of the Q-D

and QDS algorithms. Table 6.1 shows the summary of the results of our experiments using an

HPSG-based Japanese grammar for the conference registration telephone dialogue domain. We

used 16 sa,rrple sentences which are provided in the Appendix I. A representative portion of

the grammar is shown in Appendix II. The gramma,r used in the experiments was originally

developed by ATR as a large scale spoken-Japanese language grammar (containing over 10,000

grammar nodes) and is scaled down (about 3,000 grammar nodes) to run on a Sun Sparc2 with

28 mega bytes of physical memory at CMU.

We used Earley's parsing algorithm for the experiment. Although it is scaled down from

the ATR's current Asun.o, gra,mmar, it covers many of the important linguistic phenomena

in spoken Japanese. The covered phenomena include coordination, case adjunction, adjuncts,

control, slash categories, zero-pronouns, interrogatives, WH constructs, and some pragmatics

(speaker, hearer relations, politeness, etc.) ([Yoshimoto and Kogure, 1989]). The 16 sam-
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ple telephone conversation sentences used in the experiments varied from short sentences (one

word, i.e., hai ,yes') to relatively long ones (such as soreilehokochitokurosochirunitourokuyoushi-

woookuriitashimasurwhich means .In that case, we [speaker] will send [polite] you [hearer] (the)

registration form.'). Thus, the number of (topJevel) unifications per sentence varied widely

(from ? to over 4'000).

,Unifs, in the table represents the total number of top-level unifications during a parse (i'e,

the number of calls to the top-level 'unify-dg" and not 'unifyl'). Thus, 'unifs' is not the total

number of unifications recursively called during a parse' It is only the number of top-level

unifications called by the parser during the analysis of a sentence. Normally, during a parse'

,unifyl, is called several times more often than'unify-dg' ('unifys'). For example, with QDS, for

the parse of the sentence 12, 'unify-dg' (tUnifs') were called 3,421 times and during this parse'

unifyl was called 22,674times. For sentence 13, it was 41274 and 27,605 respectively' 'USrate'

represents the ratio of successful unifications to the total number of unifications' 'Number of

Copies' represents the number of nodes created during each parse' 'CPU-Time (non-gc msec

user), is the actual parsing time for a sentence in milli-seconds (1/1000th of a second) not

counting the time taken for garbage collection. (The parser and the unification algorithms are

implemented in Commonlisp). 'CPU-Time (total msec user)' includes the time required for

garbage collectiou that proceeds in the background

The algorithms compared were Quasi-Destructive Graph Unification with Structure-Sharing

(QDS), Quasi-Destructive Graph unification (Q-D), Wroblewski's algorithm (w)' and Kart-

tunen,s'algorithm (K). These algorithms are described in Chapter 5 (QDS), Chapter 4 (Q-D),

and Chapter 3(Kttttuichi and Wroblewski2)。 f thiS thesiso We did not adopt Pereirrs dgO―

tohandlecycleaasdalaoonlyonearrayisugedinourimpl.-entationto
etore the coptentg of original graphe.

2We updated hie algorithm as well to handle cyclee'

蝿
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rithnl for the experilnents since Karttunen's algorithm has been reported to be more emcient.

A19o,we cotld notflnd an e■ cient way of handling cycles using Pereira's algorithmo We adopted

Wroblewski's algoHthm(enhanCed by Koguret methodお r handung cy●eS3)田 representttive

of the incremental copying schemes since a signiflcant speed― up over Wroblewski's has not been

reported in incremeⅢtal SCh,平 es,本dditionally,we could nOt ind a method to handle cycles us―

ing Emele's dgorithm efnciently.Because of the case ofittplementing Wroblewski's algorithm,

it should le etty to comptte the performance of any future incremental schemes against the

performance of Wr6blewski's algorithm and to indirectly compare them with the performance

of Q‐ D,QDS and Kttttunen's algorithms reported in this thё sis.The Ettley paser ttld the

unincation algorithtts are written in CommonLisp4 and are run on a SUN Sparc2 with 28 mega

bytes of llAM.

Using the data shown in the Table 6‐ 1,Figure 6-l plots the relation between the number

of nodes cretted(ioe"number of cOpies created)during a pttse(`Num of Copies')祖 d the

number of unincttions during a pttse(`UnifSり おr the sample 16 sentenceso We cm see th就

the incre8e in the number ofnodes created during a parse is approxlmately linear to the increase

in the ntmber of uniflcations during a parse consistently for the 16 sentences, The amount of

cOples stays at劉『ound 75 percent of wroblewski's」 gorithm tsing the Q― D and Karttunen

algOrithmL The Q‐ D and Karttunen algorithms behave in the same manner since they both

create coples only after successful uniflcations and ncither use structure― sh"ingo About half

of the unincations were failures during the paFSeS and the copies created during uniflcatiOns

until the detection of failures in WrObleWskl's dgorithIIl are the source of this reduction in

SCyde8 Can Ъe haidlёd ir wroblewski'3 algOrithm by checking ihother al arc with the sanle label already

e対Bts when ttc8 are added to a nOde.lf Buch an ttc already e対 8t8,We de8truCtively unify the node which i8

the deBtinati6■ of the exiiting arё 覇th the五Ode whiぬ ls the destinatio■ of the arc being idded.lf8iCh an arc
d∝8 nOt e邁8t,We Simply add it(lKogure,198可 ).Thu8,げdeB call be handled very cheaply in WrOblewski'8
algorithm。

4Auegro cL 4.0。 l ISUN 41.                                       1
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2   370
3     19

4   219
5   2433
6    245

8    314
9   1996
10  2811
11   223
12  3421
13  4236
14   95
15    87
16    87

tOta■  16570

(1■。r tota■ )

CoroPariaon of four roethodg

Saat* Unifg USrate llun of CoPi€8

- Xurnber of CoPiea arrd CPg uaer time

cPU-Tins (aoa-gc na€c trser) cPU-Tine (totaL meec uger)

qDs q-D H x !l: 3"? :.^ l,QDS  Q―DaK     ‖

0。 42     18    79     96
0.38   1821   6333   8118
0。 21     26    111    172
0.51   1263   4654   6036
0.38  12321  50220  66204

0,37    937   3670   4569
0。 42     18    79     96
0。 48   1269   6009   7426
0.32   6718  38024  53354
0.42  13894  59762  86448
0.43   1021   3910   5454
0.34  17678  76161 103427
0.38  32035 111307 135504
0.44    117   1218   1504
0.48    389   1513   1685
0。 48    389   1513   1685

92044 364563 481778
19。 11  75.71   100%

2二五    181    250     250      233    184     250
1867   1917    3900   1

1867   1917   2534    9883      ___    ^_"     ^a7

267 267 267 250 267 ?l!
1300   1567   1933    4334     1483   1567    1933

18217  41050   51467  43
11516  16233  24033  352817

1200   1450    1667
1200   1450   1067    3850

233    200     300
233    200    300     250            ____    ^^^^   4

160`   2:II   ?336    7066     1600   2584    2800   101

13334  10784  17516  223683    13067  30700   39383  320
27067  54433   95733  784

19617  28883  42349  596266        _    _´ ^    ´́
^ら

    "
_1267   1316   1603    4183     1267   1316    1683

22817  27217  51750  653233    34067  51434  136434
32599  41167 112683  9579o6    49616  93433  225933 137

450    617    717450    617   717     750
683    733     883

683    733    883     983

700    733    884    950     700    783     884
106683 135852 262749 2815814   152017 282668  564234
40.61  51.7%   100% 1071.71    27・

0%   50.11   100%

3.:'  
・・
二::'   3::'    loo%     |・ 91    7.3%   14.51

Table 6.1:COmparison of four methods‐
Number of COpies and CP■ T uSer tinle。

the Q‐ D and Kttttunen's SChemes.Since failures tte found,omewhere in the middle of the

gralphS,a25 percent reduction in wasted coples seems reasonable with the observed unincation

succeSS rttet The reduction should be smaller with higher USrtte and gretter With loWer

USrtte.The substantial reductiOn of COpies cretted in the QDS sCheme shOWS the signincance

of structure―Shttingo SOmewhtt uneVen beh〔 wiour of the QDS scheme reiects the variety 9f

inguistiC Phenemena coVered in the 16 sentenCes.HOWever,overall,the QDS scheme creates

signincantly less COples than both Q=D(Kttttunen)and Wroblews●
'S SChemes.The copies

cietted by QDS amount t0 0■ ly 25 perce■t5。f the COpies cre就ed by the Q‐ D and Kttttunen

schemes and 19 perCent of the cOples created by Wroblewskl's SCheme。

Figure 6‐2 repFeSelti the P19tting Of the parSing time btted o,the Table 6-1.Figure 6-3 is

the piotting oi p"sing time excluding Karttunen'S algorithm.The gabarge cOllection time is

tTh*" fiSttt"t -" derived from the figureo in the table'
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Number of Nodes (Copies) Created vs Number of Unifs
Nodes Created x 103
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Figure 6-1: Number of Copiea vs Number of Uniflcations

not included in the CPU time.

Figure 6-4 and Figure 6-5 are plottings of parsing time including the time required for

garbage collection which is performed in the background. Therefore, the graphs plot the actual

parsing time which is required for the parse of sample sentences. Because of the significant

savings of wasted copies, the QDS runs significantly faster than the other algorithms. It only

requires 3.9 percent of Karttunen's algorithm and 27.0 percent of Wroblewski's algorithm.
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CPUTimex 106
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CPU Time (non'gc msec user) vs Number of Unifs

0.00 1,00 2.00 3.00 4.00

QDS

Unifs x 103

Figure 6-2: CPU time vs NumDer or rruuts'rtruu!
,

6.2 Comparison using a simulated grammar :

F
v

we have seen in the previous section tha.t the QDS atgorithm runs at about 25 times the speed

。fkartttien's and 4 times the speed of WrobleWSk's alg`rithm:.^130,the Q―
D algorithm runs

i over 10 11轟 tsthe speed of責 轟ttuien's dgOrithm tta 2 times thespeed ofWroЫ
ewSkrs agO―

ithmi Tiesittd喜田。btainea b田さdupOnthesmiegrammarwhiChprov通 es the unincttbn

‐
succes:iateおsi島此も)01about 40 to 4患 peiceit with ti.e16 sampie geiteices. As we discussed

earller,the strength of the Q― D algorithms dependS largely on the levdS Of USRateo With the

Number Of UninCatio鵬
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CPU Time (non-gc msec user) vs Number of Unifs
CPUTimex 103
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Figure 6-3: CPU time vs Number of Uniflcations (without I(arttunents algorithm)

lower USRate, the strength of the Q-D algorithms should be more conspicuous compared to the

incremental algorithms since significantly fewer copies get wasted due to unification failures.

In this section, we would like to examine the behaviour of the Q-D schemes under different

USRates. Since existing grammars normally produce consistent USRates for different sentences,

we needed to simulate different USRates using an artificial grammar. Appendix III shows the

rules and definitions we used for the experiments. In order to simulate different USRates we first

define three simple rules (based upon EPSG/JPSG framework) as seen in Appendix III. Rulel is
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rulet:
ro1IIDTBS ro2t[DrRt rosrlsYx r04[IEEAD r05tl]lll

tsw 106[IFErD r05]l

CPU Time(total msec user)VS Number Of Unifs

Karttunen

Wざ面こ蓄工i…

い

■5S~~~~

I-evel Unifs x 103

2.00 3.00       4.00

time i五こluding thё b=Ckground GC tiIIle.

Ti言IIi:il:Ttti‡鷲1∬1:‖Il上富1爾t〔

directed graphs.Thこ refore,the rules look as beloW using Our notatiOn(ttten hOm the actu」

6utput of the system):            
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CPU Time x 103

CPU Time (total msec user) vs Number of Unifs

WЮ blewski

い
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p―Level Unifs x lo3
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GC)vs Number of Unincations(withOut Karttullen's

X04[[HEAD  X05[[COH X06[]]]]]
X08[[SUBCAT  X09[[FIRST  X06]

[REST  X10[]]]]]]
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Figure 6-5: CPU time (incl.
algorithm)

n1e2:
r01IIDTBS r02IIDTRI rO3[[SYl

[DTB2 r07[[sYX

lsT[ r11[ISUBCAT r1o]l

nle38
X01[[DTRS  X02[[DTRl  X03[[SYI  Xo4[[HEAD  X05[[COH  X06[]]]]]

[DTR2  X06]]

We combine these three rules, i.e., (unify-dg (unify-dg rulel rule2) rule3)), and producq one

0
0

口

　
　

　

　

０

口
　
　

　
　

　
　

　

０

●● 」
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rule graph dgl which is:

d813

xol[[DTRS

ISII

llke thiS One・

Now,We ploVide two lexical entries

them WOuld fail.)

lerl:
ro1[tsYx ro2[IBEID r03[[rGR

1er2:
iorttsrx ro2[tEEAD ro3t[rcn ro4t[cElt ror FEt{]

' truu roo srxcl
[Pens ro? TErnD]l

tcrsE ro8 oBJEcrrvEl
lurr r09 xl
lxronu r1o f,oRurl]
IPBED r11 ]tiluslll

We unify dgl with lexl and get dg2:

ro2[[DTB1 rO3[ISYX r04[[uErD rosttco[ x06[[sYt ro7[[slncar ro8[[FrRsr 106]

[REsr rost]lllllll
[DTn2 106ll

r1o[tsErD 106l
[suBctr roe]l

Note thtt dgl represents the three basic Principles of JPSGノ
HPSG and therefore character―

izes typical uniflcation‐btted grammar rules 77hich are used many times d■ Fing a parseo Note

dso thtt dgl is CycliC,Given that the cycle is the resuli Of Combining the pFinfipleS,the appli‐

cation of the cydic rules are a COmmon OCCurance uSing the」
PSG/HPSG gr,mmtt f° rmalisms

which are mutually exclusive' (Unification between

ro4[[cEx ro5 rEU]

tuutt 106 srllcl
IPERS IO? TNIRD]]

[ciSE  X08 -H工Wi■ T工VE]

EM■i:lo9■]■ ‐

[IFORM  X10 NORM■ L]

[PRED Xll MIWS]]]
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dg2:
xot[IDTRS Io2[[DTR2 rO3ttslf, rO4[ISuBCAT 106[IREST 106t]l

[rrnsr r03]lll
[orRr r07[[syx ro8[IEEAD roeIrcof, ro3]

lprm lro uuusl
[l[PoR[t I11 f,oB}{rl]
[urJ r12 []
[cf,sE r13 -]tlf,uTrvEl
IAGB I14[[PERS 116 TBIRD]

[xuu 116 srlc]
[cm r17 FEtfl]Illl

[sY[ r18[[srBcrT roel
[nsro ros]l

We also unify lex2 with dgl and get dg3:

dg3:
r01[IDTBS r02trDTR2 X03[ISW rO4[tSnBCrr 106tIREST 106t]l

lornr roTttsyr ro'ItEErD rorrr.ilt*ir3lr03]lll
IPRED I1O ilIlrus]
[[r0Br{ r11 tfoR}r L]
[xr.r r12 f,]
ICTSE I13 OBJECTIVE]

lrcn r14[[PERS r15 TnrRD]
twlr 116 srf,cl

ls,* r1'[[ssBcrr 106] 
[crl r17 rE']lllll

[f,ErD rog]l

The experiment (as provided in Appendix III) is as follows: We successfully unify dgl with

dg2. We unsuccessfuly unify dg2 with dg3. We plot the relation between the CPU time (non-gc)

and the number of top-level unifications for different numbers of top-level unifications. (Namely,

10' 100, 200' 400' 800, 1600' 3200, 6400, 12800, 25600, 51200, and 102400 times.) We collect

data for USRate 0.0' 0.25, 0.5, 0.75, and 1.0. When all unifications are between dg2 and dg3

then the USRate is 0.0. If one out of four is between dg2 and dg3 and the rest are between

dgl and dg2 then the USRate is 0.25. The described experiment was performed for E different
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kinds of USRateso We comptted the Q‐
D algorithm and WroЫ ewski'S algOrithmo We did not

compare QDS since due tO Structure―
sharing,a fair cOmpariSOn can■

ot be made.It is becauSe

in thiS experiment,Same graphS T,unined many times and therefore the subgraphS W■

l simply

be shtted.using the QDS.Thus,thё  QDS WOuld not eVen need tO unify the subgraphs by simply

returning'*T*When`eq'lor≡ r)hOldS・

Figures 6‐6196‐ 10S,OW t,ё resull。 °f the experimentS6 under difFerent USILates. One thing

tobenotedisthattioQID'al:orith・
l runs faster than WrobleWSki's even with the 100 percent

uniflcttion sucdess rate.It is probably becauSeWroblewskrg igoitllntё
as twoset― difFerence

oper乱 10ns(COmplementarcs)in order to create COples incrementJし
Alsq httdling Cydes in

WIoblewski's algorithln is adding a Small amount Of Overhead tO his algorithm.

Commonliop tuu 9n 
an-IBM RT with 12 megabytes of RAM' Tbe

rules and the code provided in Appendix.Ill *'"-fi;;il lf.':.*:.1*if"l"'#"f"tr:'"":i;il:rde8譴 d the cOde proVHed h ttpp現
島i補「 ∬L=L』鶴 1諄竃 li bぬ鉗lour unda beaw use d Fyぬ c

嵐こま瑞肥i=喘置1雷胞:acycuc ttture“ ndur“ .

116



CPU Time(■ o■‐gc msec user)vs Number of UniFs:USRATEO。0
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Figure 6‐a CPU time vs Number of Unl■ cations(USRATE O。 0)
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CPU Ti面 e(■ on‐gc msec user)vs Number of UniFs:USRATEO.5
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Figure 6-8:
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CFU time vs Number of Uniflcations (USRATE 0'5)

119



500.00

450.00

400.00

350.00

300.00

250。00

200.00

150.00

100.00

50.00

0.00

0.00

Figure 6-9:

CPU Time (non-gc msec user) vs Number of Unifs: USRATE0.75

CPU Time x 103

Wroblcwski

bib…
……Ⅲ…

10

Jp―Level Unitt x 103

100.00

CPU time vs Nu血 ber of Unl■ catib"(usRATE O。 75)

ノ

120



鶴
一

CPU Time (non-gc msec user) vs Number of Unifs : USRATEI.0
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Chapter 7

Concluding Remarks

unification-based constraint processing has become a ile facto standard of natural language

proceSSing。 lUnincation_basedpostulationhasbeenacceptedasthecentralt001fOrrepresenting  l言

constraints in modern theoretiCal and computatiOnal linguiStics. In mattsiVely parallel natural

language proCessing, graph uniflCatiOn can be adOpted tO remedy the weakness Of SO―

called

mttker‐ passing methOds in processing synttttiC COnStraints.In fact,Q―
D algorithm waS de―

veloped during the COurse of such a mattSively‐
parallel natural language research,in whiCh We

needed m efFect市 eW pttdlelizable unincttion(lTOmabechi,1991bl,ITomabechi,1991Cl)。
Given

thtt iecurd6ns into shared arcs Were pTallel‐
prOCessed in the p田 Ⅲlol―procesSing en宙ronment,

theprOblemofearlycopyinginherentin incrementalschemeSWeredevtttatinginthe parallellEli

uniflcation environmento Although the topic ofparallel unincitlon is■
ot the scope of this thesis, I

IF可 loh,Ct at 19901 describes some resultS in ParalliZing the Q―
D algorithmo Since the Q‐ D al―

gorithm perfOrms COnstraint checking withOut the burden of COpying,we fOund that unincation

failure can be found extremely quickly by parallely spawning the recurSinve unifyls deep into

the feature structures.The well‐ known weakness Of uniflCation―
btted natural language proceSS―

ing haS been S10WneSS Of speed due to the tilne required by uniflCation algorithms. Given that
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more than 90 perce4t and often as much as 98 percent of parsing time is consumed by graph

unification alone, the speed-up effect of improving graph unification algorithms should naturally

have a greater impirct than t.he. effect of improving the speed of parsing methodologies alone.

Yet, although there has been some successiiil and important research in speeding up parsing al-

gorithms (such as [Tomita, 1985]), efforts to improve.unification algorithms were relatively rare

compared to parsing research eforts. Perhaps the reason for this could be that most natural

language systems to date did not contain a very large grammar and, therefore, the performance

bottleneck by unification algorithmg remained largely unnoticed. Thus, it is not surprising that

some of the important uniffcation-based regearch came from places such as SRI, MCC, ATR

and CMU, where large-scale natural language processing projects were being conducted. One

early and important research effort in the feature-structure unification-based method was by

Pereira. ActuallS the control structure of our unifyl is similar to that of Pereira[1985]. It is

the data structure of our scheme that contributes to the avoidance of the log(d) overhead that

his algorithm inevitably produces to assemble feature structure by looking at the skeleton and

the environment. In the proposed scheme, instead of storing changes to the argument graphs in

the environment, we store the changes in the graph structures themselves (non-destructively);

therefore, there will be no overhead associated with node accesses.

We shaxe the principle of storing changes in a restorable way with Karttunen's reversible

unification and we copy graphs only after a successful unification. In Karttunents method,

whenever a destructive change is about to be made, the attribute value pairsr stored in the body

of the node a,re saved into an axray. These values are restored after the top level unification

is completed. (A copy is made prior to the restoration operation if the unification was a

successful one.) Thus, in Karttunen's method, each node in the entire argument graph that

rl.e., arc structures: tlabel' and tvaluet paira in our vocabula,ry.
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has been destructiサ el,mOdined must be restOred separattly by ret五 tving the tttribute values

saved in an ttray and by resetting the'alues into the dag structure skeletons saved in another

array.In the Q― D method,One ittcrement to the global counter can invalidate」
l ofthe changes

made to the nodes. There is also a cOst for rθυersi■s the uniflcation Operation every tilne

thincation is Completed:thiS COSt is a180 prOportionate t6 the size of the input graph.Thus,if

the input graph giows(WhiCh i0 1ikely with a larg← SCde system)then theこ oOtお r saving and

rёversing changё t cttn be high.There is a130 a hiddё n c6st of Kttttunen's method assOciated

with the usё of global ttrays to StOFё  chmges.It is the tOtt由 30Citted■vith resizing the arrays

■hich arё  used tO St6re the orijial informttiono Thetё 農Obd arrayO for saving tequire Origind

allocation of memory.If the a1loCated lnemOry is too bigi then we will be wttting the unused

memory ceng;if it is too small then there will be dゴ hamiC array resiZing operations during

thiflcation which tan be c6stly. Sittct thё  numbe1 6f destrictiヤ e operatiOnO during unincation

ぶヽ es signincantl,from Sentende to sentё nce and frO五 grammar t6 grammar,determining the

desirable initial array size foi]Karttuhen's scheme ig n6n―
trivial.

In the delayta schemes, IKarttihti and Kay・ 19351 considered thё  use 6f lazy evaluation

tO delay destitttiャ e changeO dting tiincati9n:IGodden,199倒 presentё d Onё method to de―

lay copying until a dtstructive change is abOut tO takё  plaこeo GoddOi tSё g delayed C10Sures to

directlyim1lё ientltty evdiati6nduringunllCtti6no While it maybe coicё
ptudly stTdghtお キ

"田
d to takl五 dャantage of delayё o lヤaluatiOn functi6nalities in programmiig languages,actual

ёttcitncy gain fro■
‐SuCh a schёme may nOt be slgniflCamt.This is SO bOtause suCh a scheme

simply shifts the time and sp“ e constmed for cOpying to cretting and elalutting closures

and no signincttt saving can be ex,oCted overdl.2 Add■ ionally,IEmele,199J also idenlnes

:句轟翻 creatittL品8u轟 h“Ⅲ品品おiettnt霊
:躙 き驚 墟 露 er輩蹴 ∬:18織

`dettnct'operation which is■ omauy used to creat

co―erdal compiler8 While delayed closure3 are SeldOm opt:mbed.           
‐

胚ξ
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a source of other problem in Godden's method in the operations which are needed to search

for already existing instances of active data structures in the copy environment and merging

of environments for successive unification causing an additional overhead. Kogure and Emele

also use the lazy evaluation idea to delay destructive changes. Both Kogure and Emele avoid

direct usage of delayed evaluation by using pointer operations. Kogure's method also requires

special dependency information to be maintained; this adds an overhead along with the cost

of traversing the dependency arcs. Also, a second traversal of the set of dependent nodes is

required for actually performing the copying. Emele proposes a method of dereferencing by

adding environment information that carries a sequence of generation counters so that a spe-

cific generation node can be found by traversing the forwarding links until a node with that

generation is found. While this allows undoing destructive changes cheaply by backtracking

the environment, every time a specific graph is to be accessed the whole graph needs to be

reconstructed by following the forwarding pointers sequentially, as specified in the environment

list (except for the root node), in order to find the node that shares the same generation number

as the root node. Therefore the overhead for dereferencing the environmental chain could be

steep if a grammar is very large and if the same graphs are unified many times to create a large

constituent.

Like Wroblewski's method, all three lazy methods (i.e, Godden's, Kogure's a"nd Emele's)

sufer from the problem of. Eorlg Copying as defined in the thesis. This is so because the copies

that are incrementally created up to the point of failure during the same top-level unification

are all wasted. Since the future unification result of other non-deterministic recursion into

shared arcs is unknown at the point of a particular successful recursion into one shared arc, if

unification succeeds with the arc, then copies a"re created. If a failure is detected later in some

other recursive unification into the ghared arcs, then the copies created until that point will



五u get wastedo We haVe explalned that if We are to aVOid such early copying of incremental

cOpying schemes,then all COpying muSt be delayed untn after the entire top―
level uniflCation.

Thtt in essenCe is what the Q‐ D algorithm dOes.Thus,the Q― D algorith血 may be seen as

one eXtreme fOrm of lazy COpying scheme田
Wen.The strength of it hOWever,iS that there is

virtually no OVerhead fOr this fun ddaying Of COpyingo The temlorary fOrw〔
口ding pointers and

c6mp‐ 轟 こ-list are utiliZed dong with the Jobd timing(generatiOn)c6unter SO th就
』 COpying

ctt be efFectivdy delayed until after the entire top―
level unintttbno All chttges retOrded as

temportty forwarding links and as uldtteS tO COmp―
額 c‐liSt can be invalidtted Very Chea.ply

(COnStttt time)by just one increment Of the」
obd timing ёouhter.

The algorithm preSented in this thesiS htt been tested using the grammar developed at CMU

and at ATヨしand has been de壷 onstrated to cOnsistently run fast with large SCale grammars.

At CMU,the algOrithm has been integrated intO the new JANUS multi‐
language SpeeCh― tO‐

speech tranSl就iOn proieCt, Especially signincant,ATR 3dopted the algorithm fOr the latest

AsUItt prOiett,in whiCh a funy separatё
 implementation of the algOrithm integrtting Kogure's

method for negative feature structures ([Kogure, 1992]) and Kasper's method for disjunctive

feature structures ([Kasper, 198il) was done' The preliminary data that are currently available

from them (such as [Takahashi, et ol, \9921) has confirmed the performance of the algorithm

with五 ャery large gramm霞 。 MOre eXperiencee With the dgOrithm ShOuld be aVttlable ttom G ⊆

other research institutes from around the world' Among them are the university of Tuebingen'

theUniversityofKarlsruhe,KeioUniversitnTokyolnstituteofTechnolory,andTokushima

Universitywhohavealreadystartedusingthealgorithmintheirprojects.Withthecapacityto

handle variables, convergence, and cycles, and with the ease of implementing it' the algorithm

should be easily integrated into existing and future natural language processing mechanisms as

a central constraint processing algorithm of the systems'
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Appendix I: SamPle Sentences

SENTl

SEWT2

SENT3  .:EA工
:'

`Yo3。 '

SENT4  ''SOUDESU::

`it is EPo■ ite]'。

SENT5

SENT6

SENT7  ::エ エE・
:

`No.'

SENT8

SENT9

"l.l0sEIU0SEr"
3Ee11o. t

..s0cEIRAEATSIIInTAKuDEN}IAKoKUsAIKAIGIJIUUKYoKUDESUKA''

tls [polite] this [hearer] the secretariat (for the)

Interrrational Interpretiug Telephouy conf ereuc e?'

,.}IATASEIEAKAI GINII{OUSEIKOMITAINODESUCA''

'I sould like to register for (tbe) conference''

., TOUROKIryOU SEIBAARII{ASUKA''

'po lyoo; U".r" [politeJ (tbe) registration form''

SENT 1 O " ONA}.IAETOG OZYlruSYOltO ONECAI SEI UASU''

(ilay (I) ask (your) narne [politeJ and' address [polite] ' please?'

SENT1l''0oSAKASBIKITAKIICYAYAuACEI6N023*sUzUKIl{AY1,l{IDESU,'
.oosala city, Kitalucyaya to!m, 6-23, suzuki Mayuoi' it is [politel '',

SENTl2 ''KOCEIRAKARASOCEIRANITOI'ROKUIOUSEIIIOSHIKYWNIOOKI'RIITASEIUASUI'(lle [speaker] si1l send [polite] you [hearer] (tUe)

registratiou fom immediatelY' t

SENT13 :。WAKARANAITENGAGOZAIMASEITARAWATAKUSEIDOMONIITSUDEM00KIKIKUDASAI':

,.}IAKARIUASEITAl'
r (I) undlerstand [PoIiteJ .'

"soREDESAK0CEIRAKARASocEIBANIT0IJR0KuToUsEIII0ooKUBIITASEIMASU''
.T!re1, se [spea]erl eilL send [polite] you the [hearer]

(the)registratiou form''
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`If there is [P。 ■ite] (a)questiOn,

SENT14 ::ARIGATOUGOZAIMASU"
.Thnnk (you)▼ ery much。 '

SENT15 'iSOREDEEASEITSUREISEIMASU:=

`Then, good bye [P。 ■ite].'

SENT16 .'DOUMOSEITSUREISEIMASU"

`Thnn■ you and good bye EP。 ■ite]・ '

aS■ [F,,pec■ ■S‐ EP?l■ el ttytine。 '
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Appendix II: SamPle Grammar

This is a representative portion of the grammar used in the experiments reported in chapter 6'

The grammar is based upon ATR grammar ([yoshimoto and Kogure, 1989]) using JPsG/EP'G

analYsis.

(rnle P -'1 (l P)'-i.o i".a, " <2 beaa))

iio ""ii.at " 
<2 gnbcat reat))

ico "ft"l> 
rr (1 rlasb))

i.;t--- rr (2 gtbcat tirat>)

i.o "u, 
rr (1 rh))

iaO ""t, 
rr (2 san))

ico ""^r> 
-- (2 reof))

i.o p"og, '- (1 PraS)))

(ra1e v "1 (P v)
(<0 beart> " (2 heail))

(<0 rnbcat> " (2 aubcat reat))

(<O slasb> '- (2 g].ash))

(<1> -- (2 aubcat tirat>)

iaz "l rh-lnd> -' -)
i.o "l> 

rr (1 cb))

ico ""t> 
rr (2 g€u))

(<1 beait toro> rr (:o! ga ro li kara))

(<0 prag apealer) r: (1 pra$ apeater))

(<o prag EPorxer> rr (! pra$ gPealer))

(<0 prag bearer) " <1 lrag hearer))

(<0 prag bearer) -' <2 Prag bsarer))

(<0 prag reatr tirgt) -r (2 prag reatr))
(<0 prag regtr reat> rr (t pra$ regtr>))

(rule v "1 (P v) r- (2 bea.))(<0 beaal>
(<0 subcat> r (2 subcat rest))

(<O 81Esh> -r (2 alasb))

(<1> rr (2 gubcat firgt>)

i.z "u 
rh-inil> rr *)

(<o rn> " <2 ch>)

(<0 aeo> rr (2 gdr))

(<1 beatl toro> -- (:or ga ro ri to))

(<o prag apealer) ' (1 prag apeater))

(<o prag epealer) rr (! pra$ apeater))

(<0 prag l""rt"-> " <1 Prag bearer))

(<o Prag 1"o""> -- <z P"oi hearer))

(<0 prag reatr tirgt) t- 12 prag restr))
(<0 prag reatr rest> rr (1 pra$ regtr)))

(rtle I "1 (P n)
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【て

(<1 heait coh) -- (2))
(<O hearD .. (2 head))
(<1 Leail lom> '- (;or to *))
((0 rubcat) .- (2 aubcat))
(<O toot slagh> o. (2 toot alaah>)
(<O sen reln) .. (1 gem rela>)
(<o aern arg-l> -- (1 lem arg-l>)
(<O rern Eg-2> -- (2 g&>))

(rn1e n --> (v l)
(<0 Lead>
(<1 head cfo::ro)
((1 aubcat)
(<1 slash tirst
((1 alaah tirst
(<0 glaah>
(<2 gen>
(<1 s€tr>
(<o sen>

‐‐ く2 ■oad>)
●3 adnm)
‐= ond)

Bem) =口  く2 30m))

80mf> ●8 く2 80mf>)
‐● (1 8■agh ro8t>)
●E ?nO■n_30m)
●3 ?verb_80m)

・・  [[parm ?no■■_80mI

-- (1 head ctype>)
.- +)
.. (1 head))
.. (1 subcat regt))
.- <1 alaah))
rr (1 aubcat firat>)
-- (1 nh))
.- (1 s€n))
-. [[heail ltpog p]ll])
-. <1 prat>))

.- (2 head))
-- (2 gubcat reat))
r- (1 glaah))

- (2 aubcat ttrgt>)
-. (2 aeo))
'- (1 Prat tpeater))
-' <2 Prag aPealer))
'r (1 PraB bearer))
-- (2 PlaB hearer))

lregtr ?verb-aero]l)
(<o prag> .- <1 prat>))

[嘘

(rule v --) (v)
(<0 head ctlrlto>
(<l ler>
(<0 bead>
(<0 srbcat>
((0 alash r€st>
(<0 alagh ftrst>
(<0 rh>
(<0 s€D>
((1 aubcat lirat)
(<0 prag>

(rule v --) (v autv)
(<o h€ad>
(<0 aubcat)
(<O glaah>
(<1>
(<O aen>
(<0 prag apeaker)
(<0 prag apeater)
(<0 prag hearer)
(<0 prag bearer)
(<0 prag reatr firat) no 12 prag reatr))
(<0 prag regtr reat) -- <1 pra6 restr>))

(r■■0 7 ●口> (V vinf■ )

(くO head>

(くO BubCat>

(く0 8138h>

(く l head cform>

(く2 ■ox>

(く 1)

(く2 8ubCat ro8t>

.. (2 head))
-. (1 aubcat))
rr (t alagh))
-. gteu)
.- -)
rr (2 aubcat firgt>)
-. eld)



(く0 ■h>

(くO gemD

(くO prag 8Peaker>

(<0 prag bearer)
(<0 prag hearer)

(ru■0 ■ ・ 3> (v ■)

(くO head>

(く0 3ubCat>

(く 1)

(ru■O V ・・ ) (ad▼ ■)

(く0 ■03d>

(くO SubCat>

ロロ く1 ■h〉 )

・・  (2 30m))

== (l Pra8 8Peaker))

t(3 3]ここ 830aker>     38 く: prag rpea・er>)

r- (1 PraB hearer))
.' <2 Prag hearer))

'. (2 bead))
-o (2 subcat reat))
-. (2 gubcat tiret>)

を13 :II: ≡:itr fir8t〉 ロロ くl Prag restr〉 )

(くO prag re●tr rest>  ・・  く2 prag reStr〉 ))

(m■O V ロロ) (p V)

・・  く1 ■oaa coh>)
(く2)

・ 口 く2 head>)
(くO head>

(くl head fo=m> 
口・  (:Or ha mO))
●3 く2 3■bCat>)

(くO SubCat>
●● く2 3■agh =03t>)

(く0 3■agh>
・ = く2 30mp)(く0 ●Omp                  rirst 80m))

●3 (2 8■ a8h
(く1 8emp                  firBt Bemf>)

8〓 く2 8■agh
(く 1 80口己>

== <2 ●h>)(く 0 ●h)                   . Prag 8Peaker))

(く O prag 8Peaker)     ・ = く

: pra8 8Peaker))
(くO prag Speaker)    ・

8 く

: prag hearer>)
(くO prag hearer>      =口

 く

: prag hearer>)
(くO prag hearer>      8〓

 く

: prag r。 8tr>)
(くO prag re8tr firgt)=8 く

: prag roBtr)))
(く O Prag restr rest>  ロロ く1

(<1 bead ctom> " adnm)

(<2 head fora> * ao)
(<O slagb> -' (1 aLash))
(<O rh> -- (1 ch))
(<0 gen> " (1 s€D))

(<O prag> '- <1 Prag)))

(ru1e v r-1 (n v)
(<0 beaD '- (2 heatl))
(<0 atbcat> -- (2 gubcat rest>)

iaft '-= (2 aubcat tirgt>)
(<2 head uodl) -- [[coPI +]l)
(<O alaah> -' (1 alash))
(<0 rh> '- (1 rh))
(<0 sen) " (2 gen))

iao ptog apeaker) 'r (1 PraS opeater>)

(<O prai opeater) r- (2 PraS opealer>)
(<O prag hearer) -r (1 PraB hearer>)
(<o prat bearer) -- (2 PraB hearer))

iaO pt"i reatr tLrgt) .- (2 prag reatr))
(<0 prag tsatt rsBt> -' (1 PraB reatr>))

=8 く2 head>)

=口 く2 8ubCat reBt>)
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(<t>
(<2 Leail noill>
(<o alasL>
(<O rh>
(<0 s€o>
(<O prag spealer)
(<O prag apeater)
(<0 prag bearer)
(<O prag hearer)

(ru1e v r.1 (6dv v)
(<2>
(<o haad>
((O rubcat)
(<o rlaah>
(<2 rh rh-iatl)
(<0 rh>
(<o s€B>
(<0 prag apealer)

(<0 prag hearar)
(<0 prag hearer)

(く2 head mod■ >

(く0 30m>

E● く2 8ubCat firgt>)
88 [[cOP■  +]])
‐8 く1 8■aSh>)
口8 く1 ●h>)
●口 く2 30m))
ロロ くl prag 8Peaker>)

・ ‐ く2 prag 8PCaker>)

=・ くl prag hearor>)
‐= く2 prag hearer))

・・  (1 ■oad coh>)

・ " く2■lad>)
8● く2 8■bCat〉 )

‐‐ く2 ,■agh))

=‐
 ― )

ロロ く1 ■hン )

・・  く2 80m>)
ロロ くl prag 8POaker>)

-- (1 pra8 hearer))
rr (2 pra8 hearer))

(<0 prag regtr firgt) tt 12 prag reatr))
(<0 prag reatr reat) -r (1 plag restr>))

(<0 prag apeaker) -. (2 prag apealer>)

(くO Prag r08tr fir8t)●3 く2 prag re3tr))

(くO Prag r08tr re3t>  == くl Prag re3tr>))

(mle v ==> (v aux▼ )

(く0 ■oad》        =・  く2 head>)

(く0 3nbCat>      =・ く2 8■bCat rest>)

(く1)             ・ 口 く2 3ubCat first>)

(く0 3■ a8h>       口8 く1 8■agh>)

(く 1 ●h 口h―ind>   ・ 8 ■)

(く0 口h>          口・  Ond)
口= [[8fp_l ka]])

・ = く2 ●em>)
(<O prag apeater) r- (1 P:rag apeater))
(<O prag apealer) rr (2 PraE apeater))
(<O prag hearer) -. (1 PraE hsarer))
(<O prag hearer) rr (2 praS hearer>)
(<0 prag reatr first) =- (2 prag reatr))
(<0 prag restr rest) -- (1 prag reatr>))



Appendix III: A Bench-Mark code to Produce simulated Gram-

mar

The rule definitions below provide simple definitions of Eead-Feature Principle; Subcat Principle

and Adjunct Principle. when subcat Principle and Adjunct Principle a're combined a cycle

will result. The following code provides a simulated grammatical analysis by combining these

rules. The code will simulate different unification success rates (0'0, 0'25' 0'5t 0'75 and 1'0)'

This code is used to produce the graphs provided in Figure 6-6 to Figure 6-10 in chapter 6'

These rule definitions and the code are put in the public domain' This code should be useful

to be used as a benchmark test of unification algorithms.

;;; -*- llode: Liap; Syatax: Comon-liap; Package: Uaer; Baae: 10 -*-

; ii Copyf8lt (c) 1993 by lirteto Tonabecbi

;;; head teature PrinciPle
(aetq rulel (rule->graPh

'((i"ya heail) - (iltrs dtrl gya hea't)))
))

;;; aubcat PrinciPle
(aetq rula2 (rule->graPb- t(i("yn aubcat) '-(dtrs dtr2 syr gubcat rest))

((rltra altrl lyrr heail coh) - ldt"" dtr2 ayn aubcat tirat)))
))

;;; ailjulct PriaciPle
(eetq r-n1e3 (ru1e->graPh

'(i(atrs rltrl aya head coh) ' (dtra ittr2)))
))

;;; conbileil rule.
t""*q agr (urify-ilg (uaity-dg nle1 role2) ru1e3))

(setq lex1 (rule->graPh
t(((ayr head roaj) - X)

((syD head atoro) ' lortal)
((ayl hearl agr Pers) ' third)
((aya heail agr nun) - giug)
((aya heail agr gen) ' tem)
((syr hea<l Preil) 'niaus)
((ayr heail caee) '. -niniative))))

⊂ ま(
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④

(aetq 1er2 (rule->graph

'(((cyn head uaj) - f,)
((rYn bearl aforo) ' lomnl)
((aya heail agr pera) - thirat)
((syr hsaal agr aurn) - allg)
((aya beart agr gea) ' fero)
((gya hea<t preil) r rniaua)
((gYa heaal case) o objecttve))))

(aetq itg2 (uatfy-dg rerl ilgl))

(aetq dg3 (uaity-dg ler2 <tgl))

i;;; sinple data gathering belor:
(ilelparaneter rtinec* trO)
(proclaLu' (firaum *10*))

(detun ilatalO (&optioaal (tlnea *tirnegt))
trUgrate 1.0rr
(declare (type tfuaun tiuea)
(apeclal ttito€s* *dgnodear *rtgarca*))

(foroat t n-X -l(Uaiflcatioa tor -a tineo.'r tineg)
(fomat t "-I USBate 1.0 -l(")
(retq *rlgnodeer 0)
(!€tq rdgtrcl* 0)
(tirne (dotirnea (n tlnes)

(urify-itg dgl itg2)))
(fo:oat t r'-1 tlumbor of llodeg Created: -1" rdgnoiles*)
(foroat t "-I trunb€r of Arcg Created: -1" *dgarcg*))

(defu itataO (&optioaal (tines *tineg*))
trUsrate 0.0rr
(iteclare (type lirnurn tlneg)
(apecial,rtinesr *dgnodes* *dgarcg*))

(foraat t x-I UDiticatl.oa tor -a tfuea.'r tines)
(toroat g n-l USRate O.0 -I',)
(retq r6gaeiterr O)

(retq *dgalcr* 0)
(tirne (dotlnes (l tines)

(uaily-dg dg2 dg3)))
(foraat t ,r-!l f,urnber of f,odea Created: -lt' rdgtrod€B*)
(torrnat tr tt-fl f,umber of lrca Created: -l,r rdgarcgr))

〔 (

(defun data5 (2optio■ a■ (tine8 ホtim03■))

''UBrato O.5:|

(dec■arO (type fiintm tlmo3)

(8PeCia■ 'time8中  幸dgnOdo8●  ●dgarc8中 ))

(lormat t '1‐ l UnifiCation for 
‐
a tino8.・ ' timo8)

(format t ・・
。
1'SRato O.5 

‐
1]1)

(3etq ●dgnodo3●  0)

(Betq 'dgarcs, 0)
(ti口o (dotimo3 (■  (truncate (ノ time8 2)))

(aec■ar。  (type fixnnm■ ))



(urtfY-dg ilgl itg2)
(uattY-rtg ilg2 dg3) ) )

(fo:mat t "-l( f,umber of f,oileg Created:
(foroat t x-ll f,unber of lrcs Create'l:

(detun ilata26 (&optional (tineg rtiues*))
srUgrate 0.25rt

(aetq *itgrortegt O)

(retq +itgarca* 0)
(tirne (dotimeg (n (tnacate

(declare (type lirauro a))
(unify-dg itg2 dg3)
(uaity-itg rtg3 ilg2)
(uaifY-itg rl52 itgs)
(unity-<lg itgl ilg2)))

(ノ time8 4)))

(toroat x r-l( f,urnber ol Xodea Created:
(toraat t tt-.l| f,unber of Arcs Created:

(detun ilata?E (&oPtioaal (tiroeg *tirnea*))
ItUarate 0.7511

(declare (tyPe tlrann tines)
(apecial *lineg* tdgSoder* *itgalcl*))

(iol"t I n;ll Unitl"itioo for -a tlneg.tr tiroos)
(torrat i n-ll USBate 0.25 -I")

(′ time3 4)))

'1rt 16g1eflssr)
-y 16gsss*))

-Ax *ilgnodee*)
-|il'falgarcsr))

-Ail *dgnodee*)
-y s4g616s*))

(rteclare (tYPe tiuun ttuoea)
(apecial *tinei* *d6aodee* *dgarce*))

(toroat t x-:( Ullticatioa tor -a tines'rr tlneg)
(foroat x n-t[ usBate 0.75 -X")
(aetq *ilgaoitee* 0)
(aetq *itgarca* 0)
(tiue (ilotin€r (tr (tnlcate

(aleclare (type tirnun l))
(unity-rrg dg1 itg2)
(uai{Y'ilg ilgl <lg3)
(uily-rlg rtg2 itgl)
(uify-rlg dg2 dgs)))

(toroat x n'!( f,umber of Xodes Created:
(toroat t n-ll Xubor of lrcs Created:

138



'&1.:,.jF*g

.+.l.L,t
. .i::i-.=r

:::;:r,:'

,.,.:,

Appendix IV: Sarnple Code
,,-

What follows is the sample implementation of the Q-D algorithms using Commonlisp. thi
..:

code has been tested on Allegro, Lucid, and CMU Commonlisp. The code has been main-

tained for two years since the initial implementation conducted for International Workshop

on Parsing Technologies 1990, and then for ACL91 and COLING92. Currently the code is

running with stability- This code is available via email or in magnetic forms. Contact me at:

tomabech@cs.cmu.edu, tomabech@is.tokushima-u.acjp, or tomabech@mtlab.sfc.keo.ac.jp.

;;3 ~攣― MOde: Lisp: syntax: Comon-118P; PaCka80: ▼80r; Bage: 10 ‐
=―    ;;:

;;; CoPyright (C)

一̈一一ヽ̈
ぃ一「

一一一一
一一一

QUiSI― DESTRUCT工VE UIIF工 CAT工 OI ALG口 RITHM

(Q―D and QDS ver8iO■ 3)                        ;;:

1990, 1993 by Hideto Tomabechi。   1■■ r■ ghtg re80r▼ ed. ;;;

:; Fi■ o Created:   11-」 ■■y-9o by tomabech

;; Lagt Edit Date3 17● Jan ,93 by t。 コabeCh

:;
―――――――――――――――‐――‐―――‐――̈ ―――――――――――――――――

「

―~~~~~― ::

G■ oba■  Variab■ o8

(defParaneter ttquagi―ver8iO■● 5.3 ''versio■  of the a■ gorith壺  ュコPュ 0血entation]:)

(setq r16slaass* (adJoin :T0HIBECII *featuree*))

(detparanet€r *ato!0-sh!ring* niI 'rit non-niI, perforn btructure-aharing for
atona Ll th€ trotr-structure sharing node")

(defparaneter *Btr-sharing* i ItIf lon-1il, ugo strncture aharing gchene.

Strccture aharlng la parforaetl' il' the
lolloring ray. ltoroic and Leaf aodes can
be shared. Conpler loileg cal be ghareil it
ao nodes belor raa changeil (torrariling or
conp-arc-ligt). Il a node ie lorsaraled or
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haa cornp-arc-llst that inlormatioa is pasaed

up uailg nu)'tlple-vaLue-bind tacility rhel
copy of aodeg ald arca a:r€ paoaed [P' tIh€D

a node ia atonic or leat and ras aot being
torcardsal to them, tbey are regarded uachaaged

alil tbe origiaal aodea are shlred' tlbel they
are destittatioa of lorrardedilg then they are

conal'dered cha^nged. The origiaal aodeg are
abareil by putttag it in a coPy arc and the
nodes above uuet be copierl. (cbange ilfo:nation
paaaed up). It a lode ia a conpler aad ig aot
a degtiaation of torcarding, thea it a

cong-arc-liat eriata, then it ia cop-ied aril
cbanged ilfortatioa ia pasoeil up tbe recursioaa;
it ao conp-arc-ligt doss trot,erigt' thon the
origiaal loile'ia'returned and unchahged ialo ig
paaaed up. rf the conpler aode is a target ot
forvardingr the game bappena but 'chalge' iafo
ia alraya paaaed up. lais method eaables the
stncture 

"nariog 
of nodes that are lachaagad.'r)

(ilefparaneter *unificatiea* ,quaai-uaity rrDat0e of uaification algorithn")

(proclairo ' (tyP€ t *aton-sharl'ng* *313-"hariag*))

(defvar *debug-stre6p!* *atEJrdard-outputr)
(rlefvar *dgroalo-list* nil)
(detvar .*ulity-g1oba1-couater* 10) ;;; sta* tron 10

(proclaim' (tirrur! *ulity-global-couaterr))

(itetvar fdgnoalssf O lto couat aunber of dgnodea croat€d tor erperlnelta'rt)
(rtefvar *ilgarcs* o rrto count nuber ol dgarca created for erperineats.")
(ilefvar *uityO* 0 rrto coult lumber of uaify0g called"')
(defvar *unityl* 0 Ito count aumber of uaifyls called-.,')
(proclaiu I (tinun *dgaodea* *dgarca* 'runifyO* *unityl*))

i ; ; ta3r8==E===EEa-rr!ttta-ltr-!!r-=sr-l-=lr-llttil==tlt=g-a=Br!a!E!'ttEE

,rt

;;; Illine declaratiol
,,1

*-ayubolice
(proclain , (inline rnale-dgnode create-dgnode conpleneltarcs intersectarcs

copy-node-cornp-not-f orcarded copy-lode-conp-lorvardecl
conplement.arcgl'ntersect-arcaaild.arc-to-dgnodechange-dgnode-type

get-dgnode cr€ats-conPlex-dgnode create-atonic-dgaode ;; ; belov ia for
Ir..te-f.at-tlqnotle aet-dgnode-t3;arc-ltat add-featnre ;;; Kognre'

get-ilgn.o<le-fron.arg-llatget-value-fron-arcget-feature-tron.lrc
dgaorle-type-ot itgnorte-typep copy-uuifyl-ilgao<te copy-uaityl-aode
print-ilgaoile prilt-arc fiad-real-reault-dgaode
iprtlt-ia-interaal2 pprint-ts-lse+ pprirt-tc-atonic
pprilt-ts-conPler

equal-dg
change-to-atonic-itgaode chalge-to-coinpler-dglode
atonic-dgnoile-p conpler-rtgnode-p leaf -dgnoile-p
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⌒
c

))

; ; ; ra-trtt-i!t----!t-l-!tl!lllrlll-aalilirr-!-llt!!E-ttt-!!:ll!!-t!-l-3!

;; i Data Strnctnre
,aa

,ii Dstiuitloa ot IlGf,ODE

tt,

*-luciil
(iletstnct (DGIODE (:print-furction pprint-ttg)) i;i thir for loag neag

;;;(itefstruct (DGf,oDE (:print-functiol kprint-dgaoile)) ;;; this for ahort meog

(type nil :type ayubol.)
(arc-Lirt lil :type liat) ;;; contont of arc-liat ia al atonic value il type ls :atomic
(cornp-arc-liat lil :type liat)
(torcard ll.1 :type dgloite)
(copy dl :type dgaode)
(geaeratioa 0 :type tiraun)
nark ;;; for Xevia'g guma! reader (lanseil).
)

*+lucid
(ttetatrqct (DGII0DE (:print-lunction pprint-dg)) ;;; thia for loag neag

;;;(defatruct (DGilODE (:prlnt-functJ.on }prlnt-ilSnode)) ;;; thig for rbort neeg
(type nil :type ayrbol)
(arc-ligt nil- :type (or atorn Ltst)) ;;;
(corop-arc-1iat lil :type liat)
(forsar<l nll :type (or atom d6aoile))
(copy ntl :type (or atou dgnode))
(generatl.on 0 :type ffunun)

cotrtetrt ot ari-ligt ig an atorolc value it type ia :atonic

;;; nark ;;; for Xevin'a grrmlr reader (unugeil).

)

;; f,RG-fYPES

;;; curzently uaueed tor erperinenta
(detconataat *rotaal*'i)
(detconatalt *roust-bs-Pros€nt*''c)
(detcouataat *uu1tlp1e-v6l16d* t))

DC■ODE CREATIOI

(eval-rhen (conpile load eval)
(rleftype ilgarc O 'cong)

)

(iletuacro create-arc (&t€y (labol nil)
(tyPs *aornal*)

(value aif))
(declare (type aynbol label)

(type ayrobol type)
(type ilgnotte valus)
(apecial *dgarce*))

'(progl
(lacf *ilgarca*)
(cons ,Iabel ,value)))



|::菫 ICI:::lli環 :ll:li::::arC))

(defua create-dgnode (&tey (tyPe
(arc-ltgt atl) 

; i;
)

(ilectare (tYPe cYmbo1 tYPe)
(type liat arc-lirt))

(let ((telnP (nale-itgPoile

:arc-liet arc-Iiat
8type type

:輛・ rk口ark ;:: CMU

(1:ilirid:I:::8:;口
::: ::1ll)ntmber of dgnodeS Created

temp))

:ato口 iC)

(mar■ ni■) ::: CMU

(defnacro f,create-ttgnoite (toptiolat (tyPe :atonic))
rrDacro veraion of create-dgloderl
(declare (tyPe aYubol tYPe)
(apeclal *ilglodea*))

'(let ((tenP (nate-dgroile

:type,tYPe)))
; (Pual teroP *tlgloile-Ust*)

(aecfare (tYPe dgaoile tenP))

ii""i *ag""i"s*) ;;; tooot aunber of tlgnodea creatod

tenp) )

; ; ; =a:rttE!lttt-ttlt!!it!-'t-titt'rttt-'!t!!tr-!tit-!'rl:=l:rtr:!-l-tt3t

; ; ; ; l{tGB0 DEFIXITI0IS

(defioacro ITO!{ICX0DE-p (dgnoile)

(ilsclare (type itgnoile itglode))
i("q (ocxouE-type,ilgrode) :atorolc))

(defnacro LEIFX0DE-P (itgnode)

(ileclare (type dgaode dgaode))-' 
(oq (Dcxoiu-typ",tlgnoite) :leal))

(itelroacro COUPLEIf,0DE-p (ttgnoile)

(rteclare (type itgaoile itgpoite))

'(eq (DGf,0DE-type rilgpotle) :conpler))

(ilefnacro tind-atonic (arc-lst)
,rreceives an arcliat and returng the tirst occuralce of al

arc stttcture cith tbe :atotlic tyPe"'

'(tilit :atonic rarc-Iat
:test *teq
:tey f'(bnbda (arc) (arc-Iabel arc))))

(defnacro thit-leaf (arc-Igt)
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' (tiltl :loat rarc-1st
:teat *'eq
:key *'(lanbda (arc) (arc-label arc))))

(detnacro tiad-conpler (arc-Iat)
' (tind :coupler,arc-Iot

:teat *teq
:key l'(lanbda (arc) (arc-label arc))))

;;;; 8€D€ric veraiou
; ; ; (alefnacro tiail-arc-elth-labe1 (tatel arc-lst)
;;; rtreturaa the flret occlrEanc€ ol the arc atrlctnre sith
i,i the label il arc-lstrl
;;; t (tlnit ,Iabe1 ,arc-lat
;;; :te!t l'€q
;;; :Ley l'(Ianbda (arc) (arc-Iabe1 arc))))

i;; tor cons rrc atrncturo o[IY
(tletnacro tilil-arc-rith-label (label arc-Iat)
rllig one tor cols otrlY.rl
(decLare (type ryubol label)
(type liat arc-liet))

'(agsoc ,label ,arc-lst :tert t'eq))

(defnacro ainple-copy-arc (arc)
(ileclare (type itgarc arc))
t(create-arc :labe1 (arc-label,arc)

:value (airnpte-copy-dgnode (arc-value,arc))))

(defnacro identical-atonic-tlgaoilep (ifg1 dg2)
(decl.are (type ilgnods dgl dg2))
'(eq (octtooE-arc-1igt,dg1) (DG[0DE-arc-Iist'dg2)))

(defnacr-o dgpoile-arc-labeLa (dgnorle)
(ileclare (tyge ilgaode ilgnorte))

'(rher (c0l{PLElx0DE-p,dgaoile)
(napcar l' (lanbita (alc)

(arc-label arc))
(dgnode-arc-ligt,dgaoale) ) ) )

(detnacro retura-real-arc (Iabe1 dgnorte)
rrrotun arr arc in tbs clg aode that ig rith the arc-1abel.]r
(ileclare (type aynbol label)

(type itgaode dgnode))

'(if (anrt (Dcf,0DE-conp-arc-ligt,dglorte)
(- *utify-8loba1-counter*

(DGf,ODE-generation'dgnorte)))
(or (tiart ,label (Dc[0DE-atc-lirt ,dgaode)

:teet f'eq
:tey *'(tartaa (a) (fnqlUtel a)))

(tind,label (Dcf,0DE-corop-arc-llat,ilgnoile)
:teat *'eq
:key *,(larnbda (a) (fRC-faue1 a))))

(tiad,Iabel (DGf,0DE-arc-llgt,itgaoite)
:teat fteq



'(case 'tYPe(:tenPorarY
(:peroaneat

:key *'(Lanb<la (a) (ARC-label a)))))

(detuacro r et-t €nPorary-f orrartt-dgaotle ( ilglotle 1 ilgnode2)

,|This ig a tenporary torrarililg ot <lgnotlel to dgaode2, i.e.,

iugt like la the c"se of copyiagr tbe value ot tho

!;;;;" it"ia uost roeet lL' ruairv-global-couater*''
(iectare (type dgaoite tlgroilel itgnoile2)

(apeclal *unif y-gfotal-counter*) )
tioor."" (or (eg ,agnodel ,dgrode2)- -.(- (dgaoae-g.ri;"tioa-,igaoaet) s)) ;;; ad<tetl toltl9T

(setl (itirode-forcard rilgro<tel)'dgnoite2)
(getf (itgnoa"-S"o"t"iloo-' agooa"r) *unif y-g1oba1-couatsr*) ) )

(defnacro s€t-Pernarsat-torraril-itgnotle (ilgloilel dgaorle2r),

,,11ia 1g a p€tTaletrt torrardlng of dgaortel to itgnode2, i'e"

staralard llroblergki type torraritllg' The nark 9 inilicateg

tbat it ia a pe:cnaaent torrardllg'l
.(ilecLare (type itgnoite dgnodel dgno<te2))

i(raleag (eq,ilgnoitel,itgaode2)
(getf (itgaorte-torrard,dgaodel)'ilgnoile2)
iaetr (aiaode-geaeratlon,dgrodel) 9)))

(detnacro forraril-dg (ilgl i1g2 &optional (type :tenporary))
,lle have tro tirrds of iorrtailg: t€EPorary aatl peroaaent'.If it

ir ternporary' it ir orJ'y good auring tha game uity0' Il it ig

perlalent it is hardsfrea-5u"t aa ia llroblerski's algoritlm'rr

(ieclare (type ilgnode rtgt dg2)

(type eynbol tYPe))

(aet-tenporary-forrard-dgnode rdgl'dg2) )

iset-pe:malent-f ornarcl-illrode' dg1' dg2) ) ) )

i ; i tLl76l91 nacro-veraion
id"fro""o derelersace-rtg (dg-ilput)

IThiaiganiterativ"-""""ioootdereferelced-dg'rt
(declare (typa ilSnode ilg-input))
.(ito ((regult ,dg-iaPut dg)

(dg ,itg-irPut
(if ("na (DGxoDE-torrard itg)
(or (- (ocf,oDu-geaeratior dg)

(- (Dcf,ODE-generatloa ilg)
(DGI0DE-tonartl dg)
(s€tt (DcxoDE-torrard ilg)

*unif y-gIoba1- couat er* )
S))) ;;; 9 neang P€riloatrolt

dI)))) i;; nake it GCabIe ard retura ril
((noll dg) reault)

(declare (tyge rtgaoit€ rsBrlt ag))))

;;; ri_^ ,

;;; l{tP-DOLIsT ia li}e DOLIST' except it returrg 1.1tt :1-:}} r€8dta'

;ii Tbig macro is trotn Tomy'a (uaaaru Tonita) ct{T/cUu utilitiea'
td"tr""to nap-iloliat (varliat boily)
(Iet ((rnaP-regult (geaaYu)))

'(Iet ((,rnaP-regult dl))
(itoliat ,varliat (pnaL ,body ,nap-reault))
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(nr●7●r80 ,map‐ r● o■■t))))

(defun cOmP■ ementarc8 (dgi d82)
]!arcs that ex18t in d81 but not in d82.

Content of ccmp‐ arc‐■18t iS resPected if generation
ig va■ id (matcho8 the 8■ Oba■  co■nter。・|

(dec■arO (type dgnode d81 d82)

(8PeCia■  ●■ユify‐ 8■。ba■―counter中 ))

(■ol ((arc‐■18ti

(1■  (and (DG■ODE― ccmP…arc―■ist d81)

(・ ■■nify― gュoba■‐Counter中

(DG■ODE‐80■,ratiOn d81)))
(append (DCIODE― comp‐ arc‐■1●t agl)

(DCIODE‐arc‐■18t d81))

(DG■ODE‐arc―■18t d81)))

(arc‐■18t2

(if (and (DG■ ODE― comp― arc―■18t ag2)

(‐ ●■nify-8■ Oba■―counter●

(DG■ODE-80■Oration dg2)))

(append (DCNODE― comP‐ arc―■18t d82)

(DG■ODE―arc‐■i3t d82))

(DCIODE‐ arc―■18t ag2))))

(dec■arO (typo ■18t arC― ■18ti arC‐ ■igt2))

(30t―diffore2tce arc― ■13ti
arC―■13t2

3t03t

■'(■ambda (arct arc2)

(oq (arc―■abo■ 'arcl)

(arc―■abO■  arc2))))))

(defun inter80Ctarc8 (d81 d82)
3:Tal■ recurgive. Thi3 funCtion retum8 0n■ y One va■ uo,

name■y, 3hared arc8 frOm agi on■ y.:'

(dec■are (type dgnode dgi dg2))

(■abO■3 ((tr― inter30Ctarc8 (arC31 arC82 res■ ■tl)

(cond ((ュ ■■■ arc81)r03■ ■tl)

((ェomber (ARC―■ab6■ (car arc81))
arC82
8tegt #'oq

:ヒoy ■'(■ambda (bbb)

(■RC‐■abe■ bbb)))

(tr―inter80Ctarcs (car arc81)

arC82

(CO■8 (Car arc81) re8■ ltl)))

(t (tlLiiter80Ctirc8 (Car arc薔 1)

arC82
resu■tl)))))

(deC■are (type ■i3t arC81 arC82 re8■ ■tl))

(■et ((arc‐ ■18ti

(if (and (DCIODE‐ comp―arc-118t agl)

(・ ●■nify-8■。ba■―co■nter拿

(DCIODE―generation d81)))

1::l::1_1::ll:::':::''IC¨
・iSt agl)    .

(DGHODE― arc―■18t agl)))



(arc-llet2
(it (aait (DGf,0DE-conp-arc-1iat itg2)
(' *uitY-8loba1-couter*

(DcxooE-geaeration ilg2) ) )
(appenil (Dcf,0DE-corop-arc-liat dg2)
(Dcf,0DE-arc-l'tst dg2))
(DcxoDE-arc-lirt dg2)) ) )

(declars (tyPe liat arc-ligt1 arc-liat2))
(tr-interaectarcg arc-listl arc-Ligt2 rir'))))

; ; i tt-aE==E=t==a--!EEtEi!==t-EEl===!==!-=t==t-=E=E==E!'===E=====E==3=E==

I i ; rtr-ar-ltalr-atal--ltrltrlllllrtllE-irtt-ltllrr'-trllt-ar!-arttrltlt!

; ;; ; IIf,ISIGlTI0t FlttlcTlof,S

tn

,ii UailY ToPtevel Functiol
Dtt

;;; grapL-uity' aail uaify-tr are for iliffereut Para€ra'

(tlefnacro graph-uaity (agf agZ &optioaal reeuLt)
lrlhis ia the top-leveI unlfication tunctiol"
3(olity-dg ,itg1 ,ilg2 ,reeult))

(defoacro u:rily-fa (dg1 ilg2 toptional reault)
"Taie lg the top-level uaification fuctioarl
'(unity-dg ,dg1 ,d52 'l€srlt))

(detua uaity-dg (dgl itg2 &optional reault)
"lAis ia the top-level uniflcatioa functionrl

(ileclare (type dgnoile ag1 itg2))
(setq resuli (catch 'IIf,IFT-BIIL (uaifyO dgl ilg2)))
(iact *rtrity-g1oba1-couater*)
result)

(ilefua urttyo (itg1 dg2)

"Ituaitylaucceede,rnateacopyotilgl'Conteltotcomp-arc-1ist'ol
rtgl rill be atltleil to the cotrt€rt of arc-liat ol the coPy"'
(declare (type rlgaode dg1 ilg2))
(incf *uaitYO*)
(lf (eq 'rTf (ultY1 ag1 rlg2))

(copy-ilg-rith-conp-arca ag1) ) )

;i; lagt uoal 4/30/92 baged on Harie Boy].er6 (a1abo01onai1aerv.zdv.uni-tuebingen'de)

;;; sugg€stiol to avoiil infinite J-oop in a auccegelul cycle'
(defur urifyl (dg1-urileref tlg2-untleref)
[iateraectarca oaLy roturlg sharedl valuerr
(declare (type <l6aoite <tg1-underef itg2-underef))
(irct *uaifyl*)
(Iet ((ag1 (derefereace-itg dgl-unilersf))

(ag2 (derefereace-dg agz-nnderef )))
(ileclare (type dgnoite ilgl dg2))
(tf (Dcf,0DE-copy ilgl) ;;; this copy ia lrot cur?snt' so 8st rirl ot it.

(gett (DGf,0Du-Iopy rlgl) ni1))

:0
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(if (DGX0DE-copy dE2) :!.: j
(aetf (DGXODE-copy dg2) ail)) , ,.:, j ..i::

(cond ((eq ilgl dg2) i;i bocanso ot lorcariliag and loop,.it ia
r*T*) ;;; poaaible that dg1 aail dg2 ar9 egr

((Lnrrrouu-p agr)
(fo:rard-rtg dgl itg2 :tenporary) ;;; forrard dg1 to rtg2.
, *T*)

((EIFx0DE-P rlg2)
(torraril-ilg ilg2 dg1 :tenporary) i;i torraril dg2 to dgl.
, *T*)

((and (rT0!lrc[0DE-p dgl) (rT0[Icf,0DE-p rtg2))
(coad ((irtertical-atonic-dgno<tep dg1 dg2)

(torrarit-dg dg2 dg1 :tenporary)
r+T*)

(t (ttror ,ItXIFT-rln dI))))
((or (rT0t{Icf,0DE-p dg1) (rToHICf,oDE-p dg2))
(tlror tlIIIlT-FrIL ril))

(f (fet ((abaredt (irtergectarca ilgl ilg2)))
(iteclare (type liat shareatl))
(conil ((4u11 gbaredl) iii Bo shared arc B> srccoas

(for-rarrl-dg ilg2 dg1 :tenporary)
(aett (DGI0DE-conp-arc-liet ilg1) (conpl.enentarca dg2 dg1)

(DCf,oDE-geleration dgl) *uaify-g1oba1-coultar*)
J *T*)

(t (forrarrl-dg dg2 dgl :tenporary)
(doligt (arcl shareall)

(declare (type dgarc arcl))
(urityl (lBc-value arcl)

(lBC-value (return-rea1-arc
(lBc-label arcl)

agz))))
;;; if all recursloag gucceeded then belog:

(Iet ((aer (cornpleroentarca itg2 dgl)))
(declare (type liat aer))
(ir (DcnoDE-comp-arc-1iat ilgl)

(if (- *uaify-t1oba1-counter*
(uclooE-gereratior rl81) )

' (doliat (lerarc aer)
(ileclare (type dgarc aesarc))
(puab levarc (DGt0DE-cornp-arc-Iiet ilgl)))

(getf (DG[0DE-conp-arc-1iat dg1) dI))
(rett (DGf,0DE-conp-arc-liat dg1) ler

(DGlloDE-geaeratiol dg1)
*unity-81oba1-count er*) ) )

,*r*)))))))

(def,un copy-dg-rith-conp-arca (ilgaoite-underef )
(declue (type itgaode ilgnoile-ulilerel)
(apeclal *atr-rharing*) )

(if 'rstr-sharing*
(copy-ilg-rith-conp-arca- ghare dgnotle-ulilerel )
(copy-dg-rith-conp-arcs-ao-ghare dgnode-uaiteret) ) )

(defnacro copy-arc-ald-coup-arc-ao-ghare (arc)
(declaro (type itgarc arc))
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r(create-arc :Iabel (arc-Iabe1'arc)
:va1ne (copy-dg-rith-corop-arcg-ao-ghare (arc-value'arc))))

(ilefnacro coPy-Erc-a8d-coup-arc-shale 
(arc)

rrif destinatton loaes are'changeit thal nate a coPy othercige r€tnrtr

the arc itaelf 'rr 
'

(tteclare (tYPe itgarc arc))
; ir"iiipti-o.ro"-uroa (ile gt lnat ion cbangeit)

(copy-ilg-vitl-lotplo""-:h*: (arc-value'arc))
(tleclare (type ilgnoilo dsstinatlotr'

(tYPe aYmbol chanS6d))

(if changert
(valueg (create-arc :Iabel (arc-)'abel 'arc)

:vahe degtinatlol)
: chalgeit)
(valuea ,arc lil))))

(detnacro coPy-arc-and-conp-arc (arc)
' il""ro" (aieciar *str-shtrinS*)

(tYPe itgarc arc))
( (it *str-shariaS*

(copy'arc-"od-"otp-oc- ghare' arc)

i"opi-o.-tod-cornp-arc-uo-ahare ' 
arc) ) )

(definacro airnpJ,e-copy-dgaode (dgpoile-nnileref)

(ileclare (apecial *str-6harin8*)
'iayp" 

itgpoae dgnoile-unrleref))
I (if *str-shariag*

(copy-ilg-riti-"otp-o"'-eh!re'dgaotle-uderef )

(sirnple-copy-ag-ao-ahare'dgnotle-unaeret) ) )

;i; origiaal one'
(deJun copy-dg-vitb-comp-arca-ao-share 

(itgnotle-untleref )

rt1€g1g8iv€I;r go lo"o it" dgood" aril roalce a coPy of tbe dg'

coDt€at ot tbe ."rp-"t.-rist :h the origiaal ilg ehould.be

put in the arc-lisi of the copy' Ignore the conp-arc-liet sith
-old 

geaeration atamP"r
(ileclaie (type itgroile dgnode-urilerel)
(apectal *aton-aharil8i)) 

-
ti"i- iiast"ae (aeitrerilce-ilg dgaoile-nnderet) ) )

(declarl (type ilgnorte dgnoite)) .
(coait ((anit (ocriou-"opi agaoae) ; i; il a cur!€nt copy eriats

(-(DcNoDE.generation(ociloon-copyagporle)i*uaify-61oba1-corrntgr*))
(ocilooE-copy agnJae)) ; i i th€tr r€tnrn the copy

( (rrO[Icll0DE-P ilgaoile)

(if iatoD-sharlag*
dgnoile

(rei ((recatSlode (llcreate-dgnoite)))
(rteclare (type itgooite nerdgnoile) )

(aett
(DGlt0DE-tYPe nerdgnode) : atoric

; ; (DctoDE-;*" ol"agoode)- (Dcll0DE-nane ilgnocle)

(Dcx0DE-arc]u"t-"""ig"od€) (Dcx0DE-arc-list dgrode) ;;; vaLtre

(DG[0DE-gensration nerdgnode) *naify:g1oba1-counter*

(DGf,oDE-copy itgroite) aerilguoile
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)
aerdggo.le)))

((LETFX0DE-p ilgode) ;;; Bottoro ot.lattice, ie, Varlable.
(Iet ((necdgrode (f,create-ilgaorte))) : '

(declare (type dgaorte neril$rode)) :

(sett
(ocloou-type aevdgnode) :Ioaf

i; (DGltoDE-uue rerdgrode) (DG[0DE-rane ilgaode)
(DG[oDE-generatioanerilgaotle) *unify-g1oba1-counter* " .'

(DcttoDE-copy ilgaode) revdgnoile i

)
aeedgrode) )

(f ;;; coapler-dgp.oite
(Iet ( (aendgaode (l(create-dgaode) ))

(declare (type itgaode aerdgaoile))
(gett

(DG[ODE-type aerdgaode) :conPler
ti (DcloDE-nane lerdgaode) (0cfoog-aane dgaode)

(DG[0DE-generatioa uevilglode) *uai!y-81oba1-counter*
(OCf,ODn-copy ilgaoite) aertlgroile

) ;;; --this aetf tor copy la noved up frorn alter recurgion. Due to Petar, 913191

(dolist (arc (DGx0DE-arc-llat dgaoits)) ;;;do paralle1
(declare (type ilgarc arc))

(puah (copy-arc-ald-conP-arc-lo-8hare arc)
(DciloDE-arc-liat nerdgaorte) ) )

(11 (anal (Dcf,0DE-corop-arc-list dgsode)
(- *uaify-g1oba1-couaterr (Dcl0DE-8eneratloa dgaode) ))

(doliat (cornp-arc (Dcf,0DE-conp-arc-list dgrode)) ; ; ;do Para11el

(push (copy-*"-$:H;-$3:"1iil""::i;T:]
(Dcf,0DE-arc-Iiat aerilgnode) )) )

(setf (DG[0DE-conp-arc-1iot dgrode) ail) ;;; na]e it GCabIe loltlgL
needgnoate)))))

;;; rood gl4.lgL and 9/18/91 baoed upon Peter's bug report.
;; ; nod 4l3il92 baaed on Tatahashl.
(defun copy-node-comp-aot-forrardetl (itgaode)

rrllhea the node to be copietl ii :rot a result of forsarding then,
se cilI lot need paar :chalged roarkers nprard-rl

(declare (type agoae agaoile))
(con<l ((lTOHICf,0DE-p rtinoite)

(valuea dgaode n11)) ;;;the aecond vahe lil iadicates no change
((LEff[0DE-p itgnorte)
(valuee dgaode nil))

(t ;;; conpler-tlgnode
(coaat ((and (Dcl0DE-corp-arc-list itgnorte)

(r ruaity-g1oba1-couater*
(DGf,oDE-gereration agaoile)) )
(let ((nenitgaoile (%create-dguode)))

(ileclare (type dgaorte ler<tgnode) )
(gett
(DGlt0DE-type nerdgnoile) :coropler

(DGltoDE-generatl.oa nevclSnotle) *unity-global-coulter*
i ; (Dcll0DE-lame aentlgaorte) (DGtIODE-larne itglotle)
(DGil0DE-copy dgaode) lerdgnode



)
(loligt (cornp-arc (DcltoDE-conP-arc-ligt ilgnoile))

(decl'are (type dgarc conp-arc))

(pu eh (coPl-arc-aail-conp-"rcl sbart conp- arc)

(ocitoos-atc-list aertlSno'le))) - . \\
(doliet (arc (DGf,0DE-arc-list dgnod€//

(declare (tYPe dgarc arc))

(pusb (coPl-arc-aad-conp-arc-sbare arc)

(oiiroos-"tc-1iat re"tlgloile) ) )
(aetf (DGll0or-"otp-"il:ii;;'isuode) atl) ;;; TolLlst for GC'

(o"1o"" nerdgnode :chalgail)))
(t (let ((etate ail))

(declare (tYPe sYlbol state))
(setf (DGX0DE-copy ilgaode) dgnotle

(ncx0ou-gea"'.ti;;-l;;1") + oitv-51oba1-counter*)

tr,
,t,

,t,

-.. This hack 1g aeeded to avoiil intlalte loop

ritf a cyclic 6raph' By roatiag-a:tPL::::rruu q sJv--- o--r 
"to 

u" "ooid"d' 
gllalsl touabech

itaelf infinite loop , ,f,-r,^n'-----rlili till"'*,'"il;;;;;- i ; lloT?::T::il ::,isnoite) 
)

irltiipt"-talue-bir<l (arc chaagerl)

( copy-arc-and- conp-arc- share arc)

(declare (tYPe itgarc arc)
(tipe sYnto:- change<l))

(if chalgeil
(aetq gtate chalged))

arc))))
(cond (atate 

) dgaoile))'i.ooa-(("ot (eq (ncttoou-copy dgrode

t?iitoo'-*c-1igt 
(DcltooE-copv ilgno<te)) arca

(DclloDi-type (DcltoDE-copy agrode)) :conprer

) .\
(va].ues (Ilclt0oE-copy dgnode) :changetl))

(t
(let ( (negilgnoile (%create-ilglotte) ))

(docrte itype it8noae nerilgnoite))
(setf

(DGlt0DE-type nertlgnode) :conpler

i;il;;-;;"""ti'oi neragnotre) -:::tJ:tlta1-count 
er*

;;;; iffi;;;;-i"'agoia") (DGf,oDE-nane dsnorre)

(OCIOOS-arc-liat aeqilgaoile) arca

(Dcll0DE-copy tlgaode) nerilgnoile

)
(valuee nerilgnode :chalged)))))

(t (setf (ocltooE-copy <tgaoile) ri1)
;;; Tbig correepondr to the above hack'

;;; Beget tbe copy field rhen altollJ-l tto

i;; coPY gag made' glLElgL toroabech

(val.usa ilgnotle rtl))))))) ))

;;; last nod,4l3ol92 baaed on Talahaghl- (TIs) to be srme aa COLff,G92

ti"t"" copy-noile-conp-torrariled (dgnoite) 
-.llhen the node.to i" "opi"a 

is a regult ol forsarding then'

se gilI aeed to recorcl changea'

He sill aot need;;-;;Py atinic arrl Leaf oou"" otr '1'l'!l
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〔(

(declare (type dgaoile tlSnorts))
(conrr ((lToMIcx0DE-p dgroile)

(values dgaode '6tr'"gert)) ;;; coneidered chalge
( (IE[F[0DE-P ilgsoile)
(vahea dgaode :chaageil))

(f ;;; conPler-ilglode
(conrt ((alil (DG[0DE-coup:arc-ligt itgaoile)

(- r'naifY-g1oba1-counter*
(DGN0DE-generatior dgnoile)))
(let ((aerdglode (llcreate-itgaorle)))

(iteclare (type ilg'oile lerilgnode))
(getl
(Pcloos-type aerdgaode) :conPler

(nClODS-Seaeration levdgnoile) *uaity-global-cout€r*
;; (DGf,oDE-lane nerilgroae) (lcxooE-name dgaoile)

(DGf,0DE-coPY dgnorte) lerdgrode
)
(iolist (coup-arc (DG[0DE-conp-arc-liat dgnode))

(ileclare (type dgarc colop-arc))
(puah (copy-arc-aad-conp-arc-ahare colop-arc)

(DGN0DE-arc-liat reritgaoale) ) )
(dolist (arc (DcltooE-arc-liat ilguoile))

(ileclare (type dgarc arc))
(puah (coPl-arc-ald-conp-arc-shate atc)

(Dcil0DE-arc-1iet rerdgaoite) ) )
(Eett (DG[0DE-conp-arc-11st ilgnoile) nil) i;i t0ltlgL tor GC'

(values lerdgaode :cbalSed)))
(t (Iet ((gtate ail))

(rtecLare (type ayubol state))
(getf (DGll0DE-copy dgnode) ilgnotle

(DGx0DE-gen""tlloo agnoae) *uaify-g1oba1-courtsr*)

i; i --- Thls hack ls aeedad to avold infiaite loop

; i i gitb a cyclic graph. By ualiag a coPy to b€

;;, itaelt ritioft" loop caa be avoideil' lol|ElgL torsabech

iret ((arcg (nap-dorigt iarc (DctloDE-arc-llst agaorte))

(roultlple-va1ue-bintl (arc claageil)
(copy-aic-ald-conP-arc-sbrte arc)

(declare (tYPa dgarc arc)
(type' ayubol changed) )

(it changeil
(setq gtate charged))

arc))))
(cond (state

(coril ((rot (eq (DG[0DE-copy ilgaoile) dgnorle))
(aett
(Dctl0DE-arc-Itgt (DGlloDE-copy itgnode)) arca

(ocxoon-type (Dcf,oDE-copy ilgroite)) :cornpler

)
(valuea (DGX0DE-copy dgpoile) :charge'l))

(t
(let ((rerdgaode (llcraate-dgloite)))

(iteclare (type itgpode lerdgnoite))
(gett

(DGf,ODE-tyPo aevilgnotle) :conplex
(Dc[0DE-glneration aerdgnotle) *unify-8lobe] -coutrter*
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(J.et ((dgaoile (dereferelce-dg dgnoile-urderef)))
(declare (type dgnode dSrorte))
(cond ((and (DGXODE-copy dgnode) ;;; lt a curreat copy eriata

(- (DGf,0DE-generatiol (DGXODE-copy dgaorle)) fulty-global-coonter*))
(DCIODE―coPy dgnode)) ;;; thel r6trn th€ copy

( (rr0UrcroOs-p dgnode)
(Iet ((aecdgaorte (l(crsate-dgnoite)))

(declare (type dgnodo lerdgnode))
(aetl

(DGf,ODE-type aeritgnode) :atouic
ii (DGlf0DE-raneaerdgnode) (DcX0DE-ranedgnoile)

(DGx0DE-arc-list rerdgaoae) (0clooE-arc-1ist dgpode)
(DGX0DE-geleratiol nevdglode) *ullfy-g1oba1-couater*
(DGf,oDE-copy rtgaode) nerdgaode
)

recdgaoate))
( (tErFX0DE-p rlgpoite)
(Iet ((rerdgao.te (llcreate-dgsode)))

(ileclare (type itglode nerdgrode))
(getl

(Dcf,0DE-typ€ aerdgnode) :Ieal
ii (DGf,0DE-nane lerdglode) (DGx0DE-lane dgtode)

(Dcf,0DE-generation lerdgnode) *unify-81obal-cout€r*
(Dcf,0DE-copy dgloile) nerdgrode
)

aesdgIroile))
(f iii conplex-dgaoile
(1et ((aerdgaode (llcreate-rtgaode) ))

(declare (type dgaode aesalSnode))
(getf

(DGx0DE-type aeritfao<te) :conpler
;; (DcxouE-naroe aevdgaode) (DG[0DE-trana dgnotte)

(Dcl0u-geaeration lqrdgaode) *uaify-global-counter*
(DCf,OnE-copy dgnoile) aerdglode ;;; noved fron atter recurgloa 10116197

)
(aoliet (arc (OcrOOE-arc-1ist dglorts))

(declare (type dgarc arc))
(puah (einple-coPY-arc arc)

(Dcf, 0Ds-arc-11 at aerilgpoite) ) )
nerd8lode)))))

(detnacro set-forcard-itgnoile (dgnodel dgaode2)
(ileclare (type ilgaoile ilgaoilel altnorle2))
ttThig is an intertace lor Kognro/Kato earley-baaed pareerrl

t (forrard-dg rdgloilel rdgnode2 :Pernaaelt))

;;; EilD OF T0I{IBECBI'S Uf,IFICITIOil IL0GRITHI'! DEPIf,ITI0X

; i ; ss-arr--r!aat!-tlt---lt!alrlrtlal!l--iar!r-tal!-ar!t"t--al

fntertace tor Parser for Data gatberlng |O/LTI9L touabecL

(defun tala (sent)
(declare (apecial *dgnodea* *dgarcs* *uaity0 *unifyl*

*xm|BEB- 0F-ltf, rFY-SUCCESS*



*nn{BER- or-uxrPY-PlIL* ) )
(retq *ilglorter* O)

(oetq *ilgars6* 0)
(aetq *1a11YO* 0)
(retq *urityl* 0)
(geti *ruuBEf,-0F-ItllrrY-succEss* 0)

(setq *fUMBER-0P-ttltIPY-9111* 0)

if et 
- 

( ( stut-tioe ( get-iateraal-real-tine) )

(tine-apeat 0.0))
(ana eeat)
(aetq tina-apent (- (get-lnternal-real-tine) atart-tiroe))
(forrat t tr-I f,unbet it f,od"" Createil: 'ltr *dgnoites*)

ito"r"t a rr-f f,unber of Arca Create<l: 'An *dgarcs*)

(forro, tr n-1, f,urnber of Uf,ISYOa Calle<t: -Ax *unifyO*)

(foroat t "-l( f,umber ot UllIFYlg Called: -1rr 111!fyt*)
(tolo"t 1 u-fl Ulilicatioa Succses f,ate: 'Ar1 (uarate))

(rtisplaY-tine tiroe-aPent )
(terpri)
))

(defun itiaplaY-tine (tiroe)
(let ((analL O.0)

(big o.o))
(iulttple-value-sotq (big anall)

(f f oor tine interaal-tine-unit a -per-ee coatt) )
(fortat t il-I Took -D.-D gsconils of rea]. tirne'rl

big snall)))

; ; ; =-g=E===EEt==-g!alE=g=t!tltEs=!!lg=t=cEi!==EtEstE=-=rtgE=E=tB't===E

i;; Tl€ code be1os ig Ylitten by Dr' Kiyoshi Kogure of ltTT (anil ATB)

;;ig6gtaaitardizetllyuaehisaoaeprinttnnctionaaniltherefore'itia
i;; ptooiaed here under bis pernisalon'

; ; ; =-t-3===!r!t=:---E!tri!-t!E!t!=!lt==-GE:!cG=*tlsE====Et!r=!=-B=E====t

;;; DGll0DE PBIIIT F0f,cTl0tls

;i; pt"tay Printing graphr, originally ileflnetl by Kiyoahi Kogure

i;; sono noiliticatioaa bY tonabecb

; i; (itefua lpriat-dgnode (r strsaD plevel)

ii ; ,,xogor. type dgnoite prilt tnaction. uaeftl for debuigingrr

(ileclare (igaore Pleve1))
(aetq r (derefereace-ilg r))
(fo:cnat gtream 'r'8{-8}tr (dgaode-type r)

(coad ((conPler-dgnoile-P r)
(rnap rliat f 'arc-labe1 (ilgno<te-arc-1ist.r)))- (t (<tgnotte-arc-llat r)))))

(detnacro pprlnt-fe-get-dgnode-narne (itgnoile)- 
tlseconit lasaoc ,dlloile *dgnode-aaaigna*)) )

(defnacro pprfurt-ta-nate-dgaode-aane o
.(format ail 'rI-2rYD" *\O (iact *il8:node-counter*)) )

(ilefinacro pprint-te-force-get-dgnoile-aame (dgaode)

(let ((aarne (gensPo)))

Ｇ

ハ
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t (let ((rnane (pprilt-fa-get-dgaoilo-Dano,ilpode)))
(conit ((arrll ,lame)

(puah (liat ,dgrode (eetq ,larne (ppriat-ts-nake-dguode-narne))) *dgaode-aggigaa*)

,nane)
(t
,narne))) ))

iii Pretty-Prlathg a Peatnre Structure
lt,

(detnn pprlat-tr (f,l &oPtioral (streltD *debut-atreanl*)
&key (idt-irtleat 0) (irilent-atep 1) (return-p t))

(Iet ((*ilgnode-aaalgaa* ail)
(*ilggorte-coulter* O) )

(declare (apecial rdgrode-aaaigns* *tlgaode-counter*)) :

(shel returrt-p (tornat stream u-Iu))

i (reorder-feature ts)
(pprint- a-ilternal ts gtrean iait-iadelt indeat-atep)) )

(defun ppriat-rtg (fa strean plevel) ;; ta ia a dg
ISame a8 pprint-fa. This ig nodlfied to bs nged aa a priat tnnction
for detgtruct. Tateg three argunoDts: atructure, atream, a.ld level.rr

(declare (ignore plevel))
(it (aot (DctoDE-p to))

(error tt-[ EntrOB in pprint-d8r -a aot graph-atructure." te))
(Iet ((irit-taiteat 0)

(indert-atep 1)
(retura-p t)
(*itgnode-aeeigga* dI)
(*tlgaode-counter* 0))

(ileclare (apecial *ilgnotle-aarigna* *ilgaotle-couater*) )
(chel retut:u-p (fonat atream u-l(u))

i (reorder-feature ts)
(pprint-fa-interaal ts EtroEn ilit-inilent iadent-rtep)) )

(defun f, Lad-rea1-reault-,ilgnode (ilgnotle)
t'norlitied o\ SlLglgL aitdiag dereference oparatlonr'
(dereterence-itg dgnoile) )

(dotun ppriat-fe-leaf (ntll gtrg'n Lalt-ililelt ni12 aane)
(tleclare (igaore aill ai12))
(format atrearn il-vT-ltltr iait-llileat narne) )

(defun pprint-fr-atornic (fs gtream ialt-iaiteat igaore larne)
(declare (igaore iSaore))
(toroat str.an ',-Vi-l -l'r init-ladent name (OGX0DE-arc-1i8t ts)) )

(defun pprint-ta-coroplex (ta gtream irlt-inatoDt inilent-atep lane)
(let ((atriag (torort nil "-Yl-l[tr lndent-gtep lane))

(arcr (dgpoite-arc-1ilt fr)))
(fomat gtream tt-Iil atring)
(getq tatt-indent (+ lnlt-indelt (l€ngth string)))
(pprtlt-fa-arc (tirst arca) atrean ilit-iatteat inrtent-step)
(uapc *'(lanbrta (arc)

(toraat stream il-:(-Vl'[ idt-inilent)
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(terpri)
(priat 't
(Priat '!
(Prl'trt rl

(print tl

(priat rl

(priat rt

(priat 1r

(pprilt-f a-!rc arc stream lnit-lnttent laiteat-rtep))
(rest arcg))) )

(defu pprint-fr-iltenal2 (fa atiean init-iuclent inileat-atep &aur narne)

(a.tq- iaD. (pprint-ta-torce-get-dgaoile-narne f a) )

(case (dgaode-tYPe-ol fs)
(:leal (pprint-fs-1eaf fs stream ilit-il<lent
(:atonic (pprint-fa-atornl'c ts atream lait-indent
(:compler (pprilt-tg-conpler fe strerm ilit-inilent

indent-ateP narne) )
inilent-ateP narne))
ircleut-rtep aane))) )

(defun Pprint― ■8~intena■  (f8 8tream

(if (iot (DGNODE― P f8))

lnit-iadent lndent-atep &aur nams)

(srror n-|, ERBOB1 in pprilt-fs-iaternal,
(sett fa (finrt-real-reanlt-ilgnode ta))

・・a not grap卜 ‐8truCt111.:i f8))

(it (not (DG[0DE-P fa))
(error r-!, ERROR2 ln pprlnt-fa-interna]., -a trot graph-atructure"' fs))

(it inot (autl (aetq rane-ipprint-fa-get-itgaode-name fa))))
(fo:oat stream n-VT-Atr lait-indent nane)

(pprint-fe.internal2fsgtreami[it-i[d€ntindent-step)))

;;; rnoil. 3l23lSt
(defnn ppriat-ta-aic (arc stream init-iadent iadent-step)
(it (not (ABc-P arc))- 

(.r"o" ,'-l EntroB ln pprlnt-f8-arc, -a lot arc-Etructuro.t' arc))
(Iet ((string (forrnat oii "t-r-wr (arc-Iabel arc) in<tent-atep)))

(foraat str€am il-ltt strlnt)
(pprint-f s-internal (arc-va1ue arc) atrearn

(+ :.nil-inaeat (length atring)) inttent-etep)
(fo:roat gtream '1")))

;i; Th€ end of Kogure'a noile print ftnctions' 
---;--

, i i'--'--"

:;===・ ==38====B=====口 =888====● 8====3●====E"■8===88==B=3=====F=

総

Quaai-deetructive Graph Unilicatioa Package -- Yereion 5'3 n)

copyright (c) 1940, 1993 by Hiileto Topabechi' ")
lll rigbts reaerveil' n)

T}is code ir put in public itonain. Any rooililicatloas, aulgestiono,'')

anit bug t€Ports gboultl be addreaaed to tomabecb0cg'crnu'edu' 9r r)

tonabech0ig.totuehina-u.ac.Jp, or tornabechOnilab' gtc'heio'ac'Jp n)
o)

(terpri)
iptiit ,,Do (aetq *inheritaace* t) to enable EyperPrane inheritance support"')

(print" (80tq中 8tr~8haring● ni■)to di3ab■ 0 8tmCture BhⅢ ing lCh,・ 0。 ")
||ヽ

")(print " (taaa gentl) to parse tirgt eentence'

;;3==========● =====口 ==菫 =====EE=口 ==口 =● ===● 388口 88=================8====8=========

:;: ●。f
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Appendix V: Sample Parser Output

Below is provided simply to show the idea of the kind of grammar used in the experiments.

This output is on a Sun/Sparc2 station with a Lucid Commonlisp.

> (taaa geatl)
IXPITT SEXTEXCE :M0Sf,Il{0SBI
ro1[[PmG r02[[EErnER r03t]I

ISPETKER TO4I]]I
[ssl.l r06[[REcP r03]

IAGEX IO4]
IBELf, 106 H0sEr]tosur-EEtt0ll :

lsusctr ro7 E[D]
lrgro Io8[[cF0R]t r09 sExFl

lcrrpn r10 xoxcl
[Pos r11 v]l

llumber of f,oilea Created: 7S

f,umber of lrcs Created: 123

f,unber ol UXIPYOc Galleil: 6

f,unber ol UXIFYIs Calletl: 2?

Unificatioa Sncceag Rate: O.5
Toot 0.178748 aecoldg ol real tlne.

xil
> (tana gentg)

IXPUT SEITEIICE I SoBEDEHIKoCIITRIKIRIS0C[IRIIIIT0UR0KUY0IISUil000KIRTITISEIUASU

IOITIPRTG IO2tIBESTR IO3tIBEST IO4[[BEST IO5[IREST 106[]]
lrrRst ro7[[PrBsr ro8[[BEsr roe[]l

IFIRST I1O[IFIRST I11t]]
[REsr r12[]lll

tREsr rlsulll
[rrRsr r14[lrr[sr 115[frutl 116 PotrrE]

. ..[AGEf, I17[[LABEL I18 ISPEIXER*]]

TRECP rlg[[trBEl r20 *gE$ER+]ll

[nsst r21IIPTRST r22[[BEL[ r23 RESPECT]
't- [rcExr17]

IBECP I19]]
[REST X24 EID]]]]

X27 POL工 TE]

X17]          「

X19]]       ‐ ‐

[SEM
lnslu rss S0BEDEtrA-lll

IPrBU r32ll
IREGP rle]
lrcEf r17]
[osrs r34[[Prru{ r35u]

[nnsrn 136ttBEL[ r37 T0IIB0KUY0USEI-lI

[FIRST  X25[[F工 RST X26[[RELI
[■GEI

[RECP

[REST X28 EID]]]

[HEARER X19]

[SPE■XER X17]]

X29[[工 IFMムII  X30[[RESTR  X31[[OB」 E X32[]]



‐ [OB」E X35]]]   ‐

[RELI X38 0KURU-1]]
[SLASH X39[]]
[,甲 9AT=49‐ EIp]

[HE■D  X41[[POS X42 V]

EmPE X43 MASU]
[CFORH X44 SEIF]
EHODL  X45[[POLT X46 +]]]

Iumber o■ 】odo8 Created:  9161

■umber o■  ■rc8  Created:  12666

■●mber of UIIFYOB Ca■■od: 488

1umber of UNII=18 Ca■10d: 3373
Vnification Succo88 Rate: 0.3663032786885246

Took 4.966781 1econdB of rea■  time.

IIL
> (tana gent12)

IIPUT SEITEICE:XOCHIRAK▲RISOCHIRAIITOUROKUYOUSHIWOSHIKYUUN100KURIITASHIMASU
X01[[PRAG  X02[[RESTR  X03[[REST  X04[[REST  X05[[REST X06[]]

[FIRST  X07[[PIRST  X08[[REST X09[]]
[FIIST X10[[FIRST Xl

[REST

[REST X13[]]]]
[F工RST  X14[[FIRST  X15[[RELI X16 POLITE]

[■GEI  X17[[LABEL Xlo 中SPEAKER摯 ]]

[RECP  X19[[LABEL X20 ●HEARER*]]]

EREST  X21[[P工RST  X22[[RELI X23 RESPECT]
:             [AGEI X17]

[RECP X19]]

EREST X24 EID]]]]
EFIRST  X25[[FIRST  X26[[RELI X27 POLITE]

[■GEN X17]

[RECP ェ19]]
.                   [REST X28 EID]]]

・       [HElRER X19]
[SPE■KER X17]]

[SEM X29[[RECP X19]
‐     [▲ GEI X17]

[OBJE  X30[[RESTR  X31[[OBJE X32[]]
1       1               [RELI X33 TOUROKUYOVSHI-1]]

|. ‐  |    |      ‐   [PARH X32]]
|      [RELI X34 0KURU-1]

EMIII  X35[[PARM X36[]]
:              [RESTR  X37[[RELN X33 SHIKYUU11-1]

|                    [OBJE X36]]]]

[SLASH X39[]]
[SUBC▲T X40 EID]

[EE■D  X41[[POS X42 V]    |            ‐

ECTYPE X43 MASU]
[CPORM X44 SEIF]
[MODL  X45[[POLT X46 +]]]

Number of lodo8 Created:  7690
1nmber of ircs  Created8  10485                      ‐

■コmber of VIIFY08 Ca■■Od: 436
1nmber of U■ 工FYig Ca■ lod: 3126
Unification Succo88 Rat● 3 0.3348623853211009

Ｆ
〓

，
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Too■ 3.162755 8eCOndg of rea■  tim● .

N工L
>



Appendix Vf: An External Empirical Result

Table 7.1 was taken from Takahashi et o{19921. It is one of the first sets of data that came out

of the ATR's large scale speech-to-speech translation project (Asun,l). The project team has

adopted the Q-D and QDS method and has been conducting some interesting experiments using

their large scale grammar. The Q-D and QDS algorithms in the Asun.q, project uses Kasper's

method for disjunctive feature structures and Kogure's method for negative feature structure.

As we can see from the data below, the QDS method reduced the number of copies from the

Q-D method significantly. More data should be available from the project during 1993.

The effect of structure-sharing

sent.

D

number of copied nodes
number of
unificationwithout Str― Shg

Type of shared nodes

Atomic other than top an

l 22,431 15,394 12,673 3,074 19(

2 .7,283 4,94( 4,558 1,238 71

3 29,211 18,71S 16,563 3,848 195

4 154,24C 104,76S 93,934 24,187 661

5 86,028 62,651 55,395 13,803 41C

6 270,61( 186,055 159,51( 40,828 1,398

7 190,903 129,561 115,692 29,647 1,08C

8 595,279 409,09( 360,541 91,451 1,909

9 1,488,208 1,033,63つ 887,17( 233,003 4,781

251,85S 166,004 142,578 34,768 1,262

total 3,096,058 2,130,73( 1,848,62( 475,847

ratio 100% 68.8% 59.7% 15。4%

The ratio represents the ratio of QDS scheme in comparison with non-Ss Q-D scheme.

Table 7.1: The Effect of Structure Sharing.
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